organic compounds
2-Amino-N-(2-methoxyphenyl)-4,5-dimethylthiophene-3-carboxamide
aDepartment of Engineering Physics, HKBK College of Engineering, Nagawara, Bangalore 560 045, Karnataka, India, bDepartment of Physics, Bangalore University, Bangalore 560 056, Karnataka, India, cPES College of Pharmacy, Hanumanthanagar, Bangalore 560 050, Karnataka, India, and dDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
*Correspondence e-mail: prmkkgroup@gmail.com
In the title compound, C14H16N2O2S, the two aromatic rings make a dihedral angle of 13.9 (1)°. The is stabilized by both inter- and intramolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds.
Related literature
For related literature, see: Gewald et al. (1966); Cohen et al. (1977); Csaszar & Morvay (1983); Lakshmi et al. (1985); Mohan & Saravanan (2003); Bruns et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2003).
Supporting information
10.1107/S160053680801828X/bt2721sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801828X/bt2721Isup2.hkl
The title compound was synthesized by mixing of ethyl methyl ketone (0.72 g, 0.01 mol) and o-methoxycyanoacetanilide (1.94 g, 0.01 mol) and refluxing the mixture for 1 h (Gewald et al., 1966) in the presence of 4.0 ml of diethylamine. Sulfur powder (1.28 g, 0.04 mol) and 40 ml ethanol were then added and the resulting solution was heated for 2 h at 323 K. Crystals were grown by slow evaporation in a solution of isopropyl alcohol (yield 50%).
H atoms were positioned geometrically [N—H = 0.86 Å, and C— H = 0.93 (CH), 0.97 (CH2) and 0.96 Å (CH3)] and constrained to ride on their parent atoms with Uiso(H) values of 1.2 (1.5 for methyl) times Ueq(C, N). A rotating group model was used for the methyl groups.
Data collection: SMART (Bruker, 1998); cell
SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2003).C14H16N2O2S | F(000) = 584 |
Mr = 276.35 | Dx = 1.355 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P2yn | Cell parameters from 670 reflections |
a = 8.606 (2) Å | θ = 2.0–28.5° |
b = 7.5193 (19) Å | µ = 0.24 mm−1 |
c = 21.297 (5) Å | T = 291 K |
β = 100.599 (5)° | Block, yellow |
V = 1354.7 (6) Å3 | 0.45 × 0.35 × 0.28 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2514 independent reflections |
Radiation source: fine-focus sealed tube | 1503 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ψ and ω scans | θmax = 25.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.908, Tmax = 0.937 | k = −9→9 |
9834 measured reflections | l = −25→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0749P)2] where P = (Fo2 + 2Fc2)/3 |
2514 reflections | (Δ/σ)max = 0.001 |
175 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C14H16N2O2S | V = 1354.7 (6) Å3 |
Mr = 276.35 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.606 (2) Å | µ = 0.24 mm−1 |
b = 7.5193 (19) Å | T = 291 K |
c = 21.297 (5) Å | 0.45 × 0.35 × 0.28 mm |
β = 100.599 (5)° |
Bruker SMART CCD area-detector diffractometer | 2514 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1503 reflections with I > 2σ(I) |
Tmin = 0.908, Tmax = 0.937 | Rint = 0.051 |
9834 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.25 e Å−3 |
2514 reflections | Δρmin = −0.18 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2740 (3) | 0.5092 (4) | 0.74695 (12) | 0.0593 (8) | |
H1A | 0.2056 | 0.5582 | 0.7662 | 0.071* | |
H1B | 0.2436 | 0.4570 | 0.7109 | 0.071* | |
N2 | 0.4683 (3) | 0.6863 (3) | 0.93475 (11) | 0.0480 (7) | |
H2 | 0.5646 | 0.6512 | 0.9455 | 0.058* | |
O1 | 0.2675 (3) | 0.7169 (3) | 0.85124 (9) | 0.0630 (7) | |
O2 | 0.6570 (3) | 0.7367 (3) | 1.04138 (10) | 0.0676 (7) | |
S1 | 0.56490 (10) | 0.41424 (12) | 0.73395 (4) | 0.0535 (3) | |
C2 | 0.4302 (3) | 0.5144 (4) | 0.77352 (13) | 0.0420 (7) | |
C3 | 0.5040 (3) | 0.5902 (4) | 0.83034 (12) | 0.0377 (7) | |
C4 | 0.6745 (3) | 0.5669 (4) | 0.84070 (13) | 0.0398 (7) | |
C5 | 0.7229 (3) | 0.4775 (4) | 0.79298 (15) | 0.0467 (7) | |
C6 | 0.4057 (3) | 0.6700 (4) | 0.87196 (14) | 0.0420 (7) | |
C7 | 0.3992 (4) | 0.7521 (4) | 0.98507 (14) | 0.0473 (8) | |
C8 | 0.2397 (4) | 0.7879 (4) | 0.98133 (16) | 0.0627 (9) | |
H8 | 0.1694 | 0.7726 | 0.9430 | 0.075* | |
C9 | 0.1854 (5) | 0.8470 (5) | 1.0354 (2) | 0.0760 (11) | |
H9 | 0.0784 | 0.8705 | 1.0332 | 0.091* | |
C10 | 0.2894 (6) | 0.8706 (5) | 1.09189 (19) | 0.0783 (12) | |
H10 | 0.2519 | 0.9096 | 1.1278 | 0.094* | |
C11 | 0.4478 (5) | 0.8375 (4) | 1.09617 (16) | 0.0681 (11) | |
H11 | 0.5174 | 0.8549 | 1.1346 | 0.082* | |
C12 | 0.5028 (4) | 0.7782 (4) | 1.04318 (14) | 0.0528 (8) | |
C13 | 0.7904 (4) | 0.6333 (4) | 0.89802 (14) | 0.0574 (9) | |
H13A | 0.7849 | 0.5590 | 0.9342 | 0.086* | |
H13B | 0.7642 | 0.7534 | 0.9074 | 0.086* | |
H13C | 0.8955 | 0.6298 | 0.8889 | 0.086* | |
C14 | 0.8866 (4) | 0.4251 (5) | 0.78467 (17) | 0.0650 (9) | |
H14A | 0.9630 | 0.4970 | 0.8119 | 0.097* | |
H14B | 0.8970 | 0.4428 | 0.7410 | 0.097* | |
H14C | 0.9043 | 0.3021 | 0.7958 | 0.097* | |
C15 | 0.7716 (5) | 0.7639 (6) | 1.09758 (16) | 0.0876 (13) | |
H15A | 0.7754 | 0.8879 | 1.1086 | 0.131* | |
H15B | 0.8733 | 0.7265 | 1.0902 | 0.131* | |
H15C | 0.7435 | 0.6959 | 1.1320 | 0.131* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0488 (17) | 0.082 (2) | 0.0435 (15) | −0.0024 (14) | −0.0015 (13) | −0.0087 (14) |
N2 | 0.0424 (14) | 0.0643 (17) | 0.0367 (14) | 0.0069 (12) | 0.0056 (12) | −0.0021 (12) |
O1 | 0.0517 (14) | 0.0900 (18) | 0.0449 (13) | 0.0223 (12) | 0.0019 (11) | 0.0006 (12) |
O2 | 0.0649 (16) | 0.0908 (18) | 0.0437 (13) | −0.0020 (14) | 0.0012 (12) | −0.0051 (12) |
S1 | 0.0587 (6) | 0.0575 (5) | 0.0451 (5) | −0.0032 (4) | 0.0117 (4) | −0.0088 (4) |
C2 | 0.0434 (17) | 0.0445 (16) | 0.0374 (16) | −0.0041 (14) | 0.0055 (14) | 0.0028 (13) |
C3 | 0.0402 (17) | 0.0392 (15) | 0.0327 (15) | 0.0016 (13) | 0.0043 (13) | 0.0021 (13) |
C4 | 0.0418 (17) | 0.0356 (15) | 0.0410 (17) | −0.0004 (13) | 0.0051 (13) | 0.0033 (13) |
C5 | 0.0457 (18) | 0.0442 (17) | 0.0508 (18) | 0.0008 (14) | 0.0106 (15) | 0.0013 (14) |
C6 | 0.0418 (18) | 0.0429 (17) | 0.0395 (17) | 0.0021 (14) | 0.0031 (14) | 0.0067 (13) |
C7 | 0.058 (2) | 0.0443 (18) | 0.0433 (18) | 0.0022 (15) | 0.0187 (16) | 0.0033 (14) |
C8 | 0.067 (2) | 0.070 (2) | 0.055 (2) | 0.0124 (18) | 0.0222 (18) | 0.0090 (18) |
C9 | 0.083 (3) | 0.075 (3) | 0.081 (3) | 0.024 (2) | 0.044 (2) | 0.020 (2) |
C10 | 0.126 (4) | 0.061 (2) | 0.060 (3) | 0.019 (2) | 0.046 (3) | 0.0082 (19) |
C11 | 0.109 (3) | 0.055 (2) | 0.044 (2) | 0.002 (2) | 0.023 (2) | 0.0019 (16) |
C12 | 0.075 (2) | 0.0466 (18) | 0.0370 (18) | −0.0016 (17) | 0.0123 (17) | 0.0028 (14) |
C13 | 0.0458 (19) | 0.068 (2) | 0.055 (2) | 0.0007 (16) | 0.0024 (16) | −0.0063 (17) |
C14 | 0.056 (2) | 0.066 (2) | 0.075 (2) | 0.0058 (18) | 0.0185 (19) | −0.0091 (19) |
C15 | 0.088 (3) | 0.123 (3) | 0.044 (2) | −0.026 (3) | −0.010 (2) | 0.007 (2) |
N1—C2 | 1.360 (3) | C7—C8 | 1.387 (5) |
N1—H1A | 0.8600 | C8—C9 | 1.392 (5) |
N1—H1B | 0.8600 | C8—H8 | 0.9300 |
N2—C6 | 1.352 (3) | C9—C10 | 1.373 (5) |
N2—C7 | 1.407 (4) | C9—H9 | 0.9300 |
N2—H2 | 0.8600 | C10—C11 | 1.373 (5) |
O1—C6 | 1.241 (3) | C10—H10 | 0.9300 |
O2—C12 | 1.370 (4) | C11—C12 | 1.376 (4) |
O2—C15 | 1.419 (4) | C11—H11 | 0.9300 |
S1—C2 | 1.727 (3) | C13—H13A | 0.9600 |
S1—C5 | 1.740 (3) | C13—H13B | 0.9600 |
C2—C3 | 1.382 (4) | C13—H13C | 0.9600 |
C3—C4 | 1.454 (4) | C14—H14A | 0.9600 |
C3—C6 | 1.462 (4) | C14—H14B | 0.9600 |
C4—C5 | 1.347 (4) | C14—H14C | 0.9600 |
C4—C13 | 1.512 (4) | C15—H15A | 0.9600 |
C5—C14 | 1.504 (4) | C15—H15B | 0.9600 |
C7—C12 | 1.399 (4) | C15—H15C | 0.9600 |
C2—N1—H1A | 120.0 | C8—C9—H9 | 119.9 |
C2—N1—H1B | 120.0 | C10—C9—H9 | 119.9 |
H1A—N1—H1B | 120.0 | C11—C10—C9 | 120.9 (4) |
C6—N2—C7 | 129.6 (3) | C11—C10—H10 | 119.5 |
C6—N2—H2 | 115.2 | C9—C10—H10 | 119.5 |
C7—N2—H2 | 115.2 | C10—C11—C12 | 119.5 (4) |
C12—O2—C15 | 118.0 (3) | C10—C11—H11 | 120.3 |
C2—S1—C5 | 91.95 (14) | C12—C11—H11 | 120.3 |
N1—C2—C3 | 129.5 (3) | O2—C12—C11 | 125.3 (3) |
N1—C2—S1 | 119.1 (2) | O2—C12—C7 | 114.0 (3) |
C3—C2—S1 | 111.4 (2) | C11—C12—C7 | 120.8 (3) |
C2—C3—C4 | 111.8 (3) | C4—C13—H13A | 109.5 |
C2—C3—C6 | 118.4 (2) | C4—C13—H13B | 109.5 |
C4—C3—C6 | 129.6 (2) | H13A—C13—H13B | 109.5 |
C5—C4—C3 | 112.9 (3) | C4—C13—H13C | 109.5 |
C5—C4—C13 | 121.6 (3) | H13A—C13—H13C | 109.5 |
C3—C4—C13 | 125.4 (3) | H13B—C13—H13C | 109.5 |
C4—C5—C14 | 130.2 (3) | C5—C14—H14A | 109.5 |
C4—C5—S1 | 111.9 (2) | C5—C14—H14B | 109.5 |
C14—C5—S1 | 117.9 (2) | H14A—C14—H14B | 109.5 |
O1—C6—N2 | 120.5 (3) | C5—C14—H14C | 109.5 |
O1—C6—C3 | 121.6 (3) | H14A—C14—H14C | 109.5 |
N2—C6—C3 | 117.9 (2) | H14B—C14—H14C | 109.5 |
C12—C7—N2 | 115.7 (3) | O2—C15—H15A | 109.5 |
C12—C7—C8 | 119.1 (3) | O2—C15—H15B | 109.5 |
N2—C7—C8 | 125.2 (3) | H15A—C15—H15B | 109.5 |
C9—C8—C7 | 119.6 (4) | O2—C15—H15C | 109.5 |
C9—C8—H8 | 120.2 | H15A—C15—H15C | 109.5 |
C7—C8—H8 | 120.2 | H15B—C15—H15C | 109.5 |
C8—C9—C10 | 120.2 (4) | ||
C5—S1—C2—N1 | 179.1 (2) | C4—C3—C6—O1 | 163.3 (3) |
C5—S1—C2—C3 | −1.1 (2) | C2—C3—C6—N2 | 157.1 (3) |
N1—C2—C3—C4 | −179.5 (3) | C4—C3—C6—N2 | −18.8 (4) |
S1—C2—C3—C4 | 0.8 (3) | C6—N2—C7—C12 | −170.1 (3) |
N1—C2—C3—C6 | 3.9 (5) | C6—N2—C7—C8 | 11.3 (5) |
S1—C2—C3—C6 | −175.8 (2) | C12—C7—C8—C9 | −0.7 (5) |
C2—C3—C4—C5 | 0.1 (3) | N2—C7—C8—C9 | 177.8 (3) |
C6—C3—C4—C5 | 176.3 (3) | C7—C8—C9—C10 | 0.4 (5) |
C2—C3—C4—C13 | −179.9 (3) | C8—C9—C10—C11 | 0.3 (6) |
C6—C3—C4—C13 | −3.8 (5) | C9—C10—C11—C12 | −0.6 (5) |
C3—C4—C5—C14 | −179.9 (3) | C15—O2—C12—C11 | −3.0 (5) |
C13—C4—C5—C14 | 0.1 (5) | C15—O2—C12—C7 | 178.2 (3) |
C3—C4—C5—S1 | −1.0 (3) | C10—C11—C12—O2 | −178.6 (3) |
C13—C4—C5—S1 | 179.1 (2) | C10—C11—C12—C7 | 0.3 (5) |
C2—S1—C5—C4 | 1.2 (2) | N2—C7—C12—O2 | 0.7 (4) |
C2—S1—C5—C14 | −179.7 (3) | C8—C7—C12—O2 | 179.4 (3) |
C7—N2—C6—O1 | 0.1 (5) | N2—C7—C12—C11 | −178.3 (3) |
C7—N2—C6—C3 | −177.8 (3) | C8—C7—C12—C11 | 0.4 (5) |
C2—C3—C6—O1 | −20.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.86 | 2.15 | 2.724 (3) | 124 |
N1—H1B···O1i | 0.86 | 2.23 | 3.009 (4) | 151 |
N2—H2···O2 | 0.86 | 2.15 | 2.565 (3) | 109 |
C8—H8···O1 | 0.93 | 2.30 | 2.874 (4) | 119 |
Symmetry code: (i) −x+1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C14H16N2O2S |
Mr | 276.35 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 291 |
a, b, c (Å) | 8.606 (2), 7.5193 (19), 21.297 (5) |
β (°) | 100.599 (5) |
V (Å3) | 1354.7 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.45 × 0.35 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.908, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9834, 2514, 1503 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.142, 0.99 |
No. of reflections | 2514 |
No. of parameters | 175 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.18 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.8600 | 2.1500 | 2.724 (3) | 124.00 |
N1—H1B···O1i | 0.8600 | 2.2300 | 3.009 (4) | 151.00 |
N2—H2···O2 | 0.8600 | 2.1500 | 2.565 (3) | 109.00 |
C8—H8···O1 | 0.9300 | 2.3000 | 2.874 (4) | 119.00 |
Symmetry code: (i) −x+1/2, y−1/2, −z+3/2. |
Acknowledgements
The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science, and the Department of Science and Technology, India, for the data collection using the CCD facility, and Bangalore University. CK thanks the Management, Administrator and Principal of HKBK College of Engineering for encouragement and support.
References
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruns, R. F., Fergus, J. H., Coughenour, L. L., Courtland, G. E., Pugsley, T. A., Dodd, J. H. & Tinney, F. J. (1990). Mol. Pharmacol. 38, 950–958. CAS PubMed Web of Science Google Scholar
Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1332–1334. CrossRef CAS PubMed Web of Science Google Scholar
Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121–128. CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 94–100. CrossRef CAS Web of Science Google Scholar
Lakshmi, V. V., Sridhar, P. & Polsa, H. (1985). Indian J. Pharm. Sci. 23, 327–336. Google Scholar
Mohan, S. & Saravanan, J. (2003). Asian J. Chem. 15, 67–70. CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiophene derivates containing amino and carboxyl functions have been found to exhibit anti-viral, antiinflamatory and antimicrobial activities (Mohan & Saravanan, 2003). Specifically the 2-amino-carboxylic acid esters were recognized as allosteric enhancers for A1 adenosine receptors (Bruns et al., 1990).
Interaction of 3-(2-thienyl alanine) with human phenyl alanine has been studied with a view to understand the mechanism of catalysis and substrate activation. Diffraction studies on bis 5-bromo-2-substituted thiophene derivatives have revealed the existence of S—S stacking interactions. Our earlier investigations on the structures of the biologically active thiophene carboxamide, has shown that the chloro substitution in the aryl amide group had a significant effect. The ortho-chloro group reversed the orientation of the amide linkage and favoured the formation of more intra molecular hydrogen bonds. The para-chloro substitution induces stabilizing effects via inter molecular hydrogen bonds. The compound in the present study bears a close structural relationship with the reported allosteric enhancers for adenosine and hence the structure has been investigated.
The molecular structure and the packing diagram are shown in Fig. 1 and 2, respectively. The molecular structure is stabilized by intra molecular C—H···O, N—H···O hydrogen bonds and intermolecular N—H···O interactions. (Table 2) The intra molecular C8 - H8···O1 and N1 - H1···O1 hydrogen bonds form pseudo- six membered rings and N2 - H2···O2 forms a pseudo five membered ring thus locking the molecular conformation and eliminating conformational flexibility.