organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 June 2008; accepted 16 June 2008; online 19 June 2008)

The title compound, C15H15NO, crystallizes with two mol­ecules in the asymmetric unit. The H—N—C=O units are in a trans conformation, similar to that observed in N-(3,4-dimethyl­phen­yl)benzamide, N-(2,6-dichloro­phen­yl)benz­amide and other benzanilides. The central –NHCO– bridging unit is tilted at angles of 17.1 (3) and 16.4 (3)° to the benzoyl ring in the two mol­ecules. The two rings (benzoyl and aniline) are almost orthogonal with respect to each other, making dihedral angles of 86.3 (1) and 86.0 (1)° in the two mol­ecules. N—H⋯O hydrogen bonds link mol­ecules into infinite chains running along the c axis.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2008a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P c

  • a = 16.4389 (8) Å

  • b = 8.2903 (4) Å

  • c = 9.4902 (3) Å

  • β = 98.165 (4)°

  • V = 1280.25 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.52 × 0.46 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.924, Tmax = 0.985

  • 38015 measured reflections

  • 2504 independent reflections

  • 2110 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 0.98

  • 2504 reflections

  • 307 parameters

  • 35 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.19 2.949 (2) 147
N2—H2N⋯O2ii 0.86 2.17 2.949 (2) 150
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of N-(2,6-dimethylphenyl)-benzamide (N26DMPBA) has been determined to study the effect of substituents on the solid state geometries of benzanilides (Gowda et al., 2003; Gowda et al., 2008a; Gowda et al., 2008b). The conformations of the N—H and C=O bonds in N26DMPBA (Fig.1) are anti to each other, similar to that observed in N-(3,4-dimethylphenyl)-benzamide (Gowda et al., 2008a), N-(2,6-dichlorophenyl)-benzamide (Gowda et al., 2008b) and other benzanilides (Gowda et al., 2003). The structure of N26DMPBA has two molecules in its asymmetric unit. The central amide group –NHCO– is tilted to the benzoyl ring at the angles of 17.1 (3)° and 16.4 (3)°, in molecule 1 and 2, respectively. The two rings (benzoyl and aniline) are almost orthogonal, with the dihedral angles of 86.3 (1)° and 86.0 (1)° in molecules 1 and 2, respectively.

Part of the crystal structure of the title compound showing molecular chains as viewed down the b axis is shown in Fig.2. Hydrogen bonds N1–H1N···O1(i) and N2–H2N···O2(ii) give rise to infinite molecular chains running along the c axis (Symmetry codes: (i) x,-y,z + 1/2; (ii) x,-y + 1,z + 1/2).

Related literature top

For related literature, see: Gowda et al. (2003, 2008a,b).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N–H distances 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C,N) and 1.5 Ueq (C-methyl). The displacement parameters of C-atoms in aniline ring of both molecules were restrained by use of the SHELXL97 DELU command with default standard deviations.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed down the b axis. Hydrogen bonds N1–H1N···O1(i) and N2–H2N···O2(ii) give rise to infinite molecular chains running along the c axis. Symmetry codes: (i) x,-y,z + 1/2; (ii) x,-y + 1,z + 1/2. H atoms not involved in hydrogen bonding are omitted.
N-(2,6-Dimethylphenyl)benzamide top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.169 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2 y cCell parameters from 18913 reflections
a = 16.4389 (8) Åθ = 3.1–29.3°
b = 8.2903 (4) ŵ = 0.07 mm1
c = 9.4902 (3) ÅT = 295 K
β = 98.165 (4)°Block, colourless
V = 1280.25 (10) Å30.52 × 0.46 × 0.22 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2504 independent reflections
Graphite monochromator2110 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.059
ω scans with κ offsetsθmax = 26.0°, θmin = 5.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 2020
Tmin = 0.924, Tmax = 0.985k = 1010
38015 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0851P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
2504 reflectionsΔρmax = 0.13 e Å3
307 parametersΔρmin = 0.14 e Å3
35 restraintsAbsolute structure: Flack (1983), 2493 Friedel pairs
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H15NOV = 1280.25 (10) Å3
Mr = 225.28Z = 4
Monoclinic, PcMo Kα radiation
a = 16.4389 (8) ŵ = 0.07 mm1
b = 8.2903 (4) ÅT = 295 K
c = 9.4902 (3) Å0.52 × 0.46 × 0.22 mm
β = 98.165 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2504 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2110 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.985Rint = 0.059
38015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03935 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.98Δρmax = 0.13 e Å3
2504 reflectionsΔρmin = 0.14 e Å3
307 parametersAbsolute structure: Flack (1983), 2493 Friedel pairs
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32493 (12)0.0027 (2)0.63912 (17)0.0476 (4)
H1N0.3240.00670.72910.057*
O10.27687 (12)0.0838 (2)0.41847 (15)0.0654 (5)
C10.27534 (13)0.0900 (2)0.5470 (2)0.0446 (5)
C20.21752 (13)0.2015 (2)0.6052 (2)0.0435 (5)
C30.15307 (16)0.2637 (3)0.5109 (2)0.0523 (5)
H30.14780.23490.41530.063*
C40.09687 (16)0.3669 (3)0.5561 (3)0.0601 (6)
H40.05320.40560.4920.072*
C50.10537 (18)0.4130 (3)0.6967 (3)0.0664 (7)
H50.06790.48430.72760.08*
C60.16901 (17)0.3537 (3)0.7909 (3)0.0655 (7)
H60.17450.38520.88590.079*
C70.22549 (17)0.2472 (3)0.7468 (2)0.0534 (5)
H70.26830.20680.81180.064*
C80.37898 (15)0.1165 (3)0.5877 (2)0.0523 (5)
C90.36263 (18)0.2796 (3)0.5956 (3)0.0611 (6)
C100.4128 (2)0.3869 (4)0.5370 (4)0.0872 (10)
H100.40280.49710.54140.105*
C110.4773 (3)0.3323 (6)0.4721 (5)0.1051 (13)
H110.50970.40560.4310.126*
C120.4940 (2)0.1719 (6)0.4678 (4)0.0922 (10)
H120.53820.13730.42450.111*
C130.44632 (17)0.0583 (4)0.5268 (3)0.0714 (7)
C140.46683 (19)0.1163 (3)0.5241 (4)0.0916 (10)
H14A0.52450.12880.51980.137*
H14B0.43580.16570.44210.137*
H14C0.45350.16710.60880.137*
C150.29134 (19)0.3401 (3)0.6634 (3)0.0813 (8)
H15A0.30350.3290.76490.122*
H15B0.28170.45160.63940.122*
H15C0.24320.27820.62910.122*
N20.82433 (12)0.5011 (2)0.52006 (18)0.0491 (4)
H2N0.82720.49240.61090.059*
O20.87411 (12)0.4211 (2)0.32326 (16)0.0615 (5)
C210.87462 (13)0.4123 (3)0.4518 (2)0.0432 (5)
C220.93234 (13)0.2984 (2)0.5387 (2)0.0432 (5)
C230.99704 (15)0.2371 (3)0.4762 (2)0.0524 (5)
H231.00310.2680.38410.063*
C241.05223 (16)0.1314 (3)0.5484 (3)0.0617 (6)
H241.09590.09270.50580.074*
C251.04286 (19)0.0830 (4)0.6833 (3)0.0695 (7)
H251.07980.01020.73190.083*
C260.9794 (2)0.1416 (4)0.7462 (3)0.0706 (7)
H260.97330.10890.83790.085*
C270.92362 (17)0.2497 (3)0.6748 (2)0.0552 (6)
H270.88050.28920.71850.066*
C280.76616 (16)0.6096 (3)0.4456 (3)0.0574 (6)
C290.69959 (18)0.5439 (5)0.3541 (3)0.0782 (8)
C300.6445 (3)0.6494 (8)0.2804 (4)0.1161 (14)
H300.59970.60930.21980.139*
C310.6549 (4)0.8115 (8)0.2950 (5)0.1338 (18)
H310.61740.88070.24320.161*
C320.7200 (3)0.8750 (5)0.3850 (5)0.1149 (14)
H320.72560.98620.39440.138*
C330.7778 (2)0.7734 (4)0.4626 (3)0.0749 (8)
C340.8494 (3)0.8415 (4)0.5588 (4)0.0956 (11)
H34A0.89850.78540.54390.143*
H34B0.84060.82880.65610.143*
H34C0.8550.9540.53830.143*
C350.6868 (2)0.3667 (5)0.3381 (4)0.0944 (11)
H35A0.63480.34620.28120.142*
H35B0.68760.31860.43030.142*
H35C0.730.32090.29240.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0636 (11)0.0502 (11)0.0299 (8)0.0042 (8)0.0098 (7)0.0009 (7)
O10.0973 (13)0.0703 (11)0.0302 (8)0.0220 (9)0.0143 (8)0.0006 (7)
C10.0622 (13)0.0405 (11)0.0317 (10)0.0035 (9)0.0088 (9)0.0025 (8)
C20.0584 (12)0.0382 (10)0.0354 (10)0.0056 (9)0.0121 (9)0.0022 (8)
C30.0676 (14)0.0524 (12)0.0370 (10)0.0002 (11)0.0074 (10)0.0012 (9)
C40.0624 (14)0.0608 (15)0.0580 (14)0.0097 (12)0.0113 (11)0.0109 (11)
C50.0785 (16)0.0621 (15)0.0651 (16)0.0169 (13)0.0318 (13)0.0066 (12)
C60.0941 (19)0.0658 (15)0.0404 (12)0.0114 (14)0.0224 (12)0.0041 (11)
C70.0704 (15)0.0549 (13)0.0356 (10)0.0044 (11)0.0096 (10)0.0001 (9)
C80.0583 (12)0.0603 (14)0.0375 (11)0.0109 (10)0.0040 (9)0.0008 (9)
C90.0758 (16)0.0583 (14)0.0465 (13)0.0119 (12)0.0011 (11)0.0019 (10)
C100.112 (2)0.0695 (19)0.077 (2)0.0283 (17)0.0019 (18)0.0093 (15)
C110.102 (3)0.116 (3)0.099 (3)0.047 (2)0.021 (2)0.018 (2)
C120.0732 (18)0.118 (3)0.089 (2)0.0255 (19)0.0234 (17)0.001 (2)
C130.0634 (15)0.090 (2)0.0615 (16)0.0082 (14)0.0117 (13)0.0007 (14)
C140.083 (2)0.097 (2)0.100 (3)0.0162 (18)0.0284 (18)0.0079 (19)
C150.116 (2)0.0602 (16)0.0685 (17)0.0098 (16)0.0150 (16)0.0055 (14)
N20.0646 (11)0.0517 (11)0.0318 (9)0.0042 (9)0.0095 (7)0.0007 (7)
O20.0854 (11)0.0690 (11)0.0316 (8)0.0136 (8)0.0131 (7)0.0056 (7)
C210.0534 (11)0.0406 (11)0.0354 (11)0.0037 (9)0.0056 (9)0.0006 (8)
C220.0566 (12)0.0389 (10)0.0337 (10)0.0058 (9)0.0050 (9)0.0026 (8)
C230.0650 (14)0.0505 (13)0.0431 (11)0.0003 (11)0.0126 (10)0.0022 (9)
C240.0620 (14)0.0627 (15)0.0594 (14)0.0096 (12)0.0054 (11)0.0100 (11)
C250.0839 (18)0.0638 (16)0.0554 (15)0.0191 (14)0.0085 (13)0.0017 (12)
C260.103 (2)0.0713 (16)0.0367 (12)0.0173 (16)0.0076 (12)0.0101 (11)
C270.0738 (15)0.0550 (13)0.0378 (11)0.0078 (11)0.0109 (11)0.0026 (10)
C280.0638 (14)0.0676 (15)0.0428 (12)0.0141 (11)0.0149 (10)0.0050 (10)
C290.0598 (15)0.117 (2)0.0581 (16)0.0097 (16)0.0087 (12)0.0036 (16)
C300.083 (2)0.167 (4)0.093 (3)0.041 (3)0.006 (2)0.006 (3)
C310.133 (4)0.157 (4)0.105 (3)0.079 (3)0.006 (3)0.026 (3)
C320.163 (4)0.086 (2)0.098 (3)0.058 (3)0.025 (3)0.015 (2)
C330.106 (2)0.0647 (17)0.0579 (16)0.0229 (15)0.0245 (15)0.0070 (12)
C340.155 (3)0.0564 (17)0.078 (2)0.009 (2)0.024 (2)0.0030 (15)
C350.0733 (19)0.114 (3)0.094 (3)0.0303 (19)0.0074 (18)0.014 (2)
Geometric parameters (Å, º) top
N1—C11.348 (3)N2—C211.341 (3)
N1—C81.429 (3)N2—C281.425 (3)
N1—H1N0.86N2—H2N0.86
O1—C11.225 (2)O2—C211.221 (3)
C1—C21.487 (3)C21—C221.500 (3)
C2—C31.385 (3)C22—C271.380 (3)
C2—C71.385 (3)C22—C231.386 (3)
C3—C41.373 (4)C23—C241.372 (4)
C3—H30.93C23—H230.93
C4—C51.376 (4)C24—C251.372 (4)
C4—H40.93C24—H240.93
C5—C61.368 (4)C25—C261.364 (4)
C5—H50.93C25—H250.93
C6—C71.389 (4)C26—C271.388 (4)
C6—H60.93C26—H260.93
C7—H70.93C27—H270.93
C8—C91.383 (4)C28—C331.378 (4)
C8—C131.405 (4)C28—C291.406 (4)
C9—C101.382 (4)C29—C301.376 (5)
C9—C151.501 (4)C29—C351.489 (6)
C10—C111.376 (6)C30—C311.359 (8)
C10—H100.93C30—H300.93
C11—C121.360 (6)C31—C321.375 (8)
C11—H110.93C31—H310.93
C12—C131.392 (5)C32—C331.398 (5)
C12—H120.93C32—H320.93
C13—C141.488 (4)C33—C341.494 (5)
C14—H14A0.96C34—H34A0.96
C14—H14B0.96C34—H34B0.96
C14—H14C0.96C34—H34C0.96
C15—H15A0.96C35—H35A0.96
C15—H15B0.96C35—H35B0.96
C15—H15C0.9599C35—H35C0.96
C1—N1—C8120.20 (17)C21—N2—C28121.55 (17)
C1—N1—H1N119.9C21—N2—H2N119.2
C8—N1—H1N119.9C28—N2—H2N119.2
O1—C1—N1121.7 (2)O2—C21—N2122.2 (2)
O1—C1—C2120.00 (19)O2—C21—C22120.06 (19)
N1—C1—C2118.25 (17)N2—C21—C22117.74 (17)
C3—C2—C7118.9 (2)C27—C22—C23118.8 (2)
C3—C2—C1117.52 (18)C27—C22—C21123.8 (2)
C7—C2—C1123.5 (2)C23—C22—C21117.35 (17)
C4—C3—C2121.1 (2)C24—C23—C22120.9 (2)
C4—C3—H3119.4C24—C23—H23119.6
C2—C3—H3119.4C22—C23—H23119.6
C3—C4—C5119.8 (2)C23—C24—C25120.0 (2)
C3—C4—H4120.1C23—C24—H24120
C5—C4—H4120.1C25—C24—H24120
C6—C5—C4119.8 (2)C26—C25—C24119.9 (2)
C6—C5—H5120.1C26—C25—H25120
C4—C5—H5120.1C24—C25—H25120
C5—C6—C7120.9 (2)C25—C26—C27120.7 (2)
C5—C6—H6119.6C25—C26—H26119.7
C7—C6—H6119.6C27—C26—H26119.7
C2—C7—C6119.4 (2)C22—C27—C26119.8 (2)
C2—C7—H7120.3C22—C27—H27120.1
C6—C7—H7120.3C26—C27—H27120.1
C9—C8—C13121.9 (2)C33—C28—C29122.5 (3)
C9—C8—N1119.5 (2)C33—C28—N2119.5 (3)
C13—C8—N1118.6 (2)C29—C28—N2118.1 (3)
C10—C9—C8118.4 (3)C30—C29—C28117.8 (4)
C10—C9—C15120.3 (3)C30—C29—C35120.2 (4)
C8—C9—C15121.3 (2)C28—C29—C35122.1 (3)
C11—C10—C9120.6 (3)C31—C30—C29120.8 (4)
C11—C10—H10119.7C31—C30—H30119.6
C9—C10—H10119.7C29—C30—H30119.6
C12—C11—C10120.5 (3)C30—C31—C32121.1 (4)
C12—C11—H11119.8C30—C31—H31119.4
C10—C11—H11119.8C32—C31—H31119.4
C11—C12—C13121.5 (3)C31—C32—C33120.5 (4)
C11—C12—H12119.3C31—C32—H32119.8
C13—C12—H12119.3C33—C32—H32119.8
C12—C13—C8117.0 (3)C28—C33—C32117.3 (4)
C12—C13—C14120.6 (3)C28—C33—C34121.9 (3)
C8—C13—C14122.3 (2)C32—C33—C34120.8 (3)
C13—C14—H14A109.5C33—C34—H34A109.5
C13—C14—H14B109.5C33—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
C13—C14—H14C109.5C33—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
C9—C15—H15A109.5C29—C35—H35A109.5
C9—C15—H15B109.5C29—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C9—C15—H15C109.4C29—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
C8—N1—C1—O12.5 (3)C28—N2—C21—O21.0 (3)
C8—N1—C1—C2177.4 (2)C28—N2—C21—C22178.5 (2)
O1—C1—C2—C316.4 (3)O2—C21—C22—C27162.8 (2)
N1—C1—C2—C3163.44 (19)N2—C21—C22—C2716.7 (3)
O1—C1—C2—C7162.8 (2)O2—C21—C22—C2315.9 (3)
N1—C1—C2—C717.3 (3)N2—C21—C22—C23164.55 (19)
C7—C2—C3—C41.0 (3)C27—C22—C23—C240.8 (3)
C1—C2—C3—C4179.8 (2)C21—C22—C23—C24179.6 (2)
C2—C3—C4—C51.5 (4)C22—C23—C24—C251.2 (4)
C3—C4—C5—C61.0 (4)C23—C24—C25—C260.9 (4)
C4—C5—C6—C70.0 (4)C24—C25—C26—C270.3 (5)
C3—C2—C7—C60.0 (3)C23—C22—C27—C260.2 (3)
C1—C2—C7—C6179.2 (2)C21—C22—C27—C26178.9 (2)
C5—C6—C7—C20.5 (4)C25—C26—C27—C220.1 (4)
C1—N1—C8—C9108.7 (2)C21—N2—C28—C33110.2 (3)
C1—N1—C8—C1369.7 (3)C21—N2—C28—C2968.3 (3)
C13—C8—C9—C102.4 (4)C33—C28—C29—C300.3 (4)
N1—C8—C9—C10175.9 (2)N2—C28—C29—C30178.8 (3)
C13—C8—C9—C15178.9 (3)C33—C28—C29—C35179.0 (3)
N1—C8—C9—C152.8 (3)N2—C28—C29—C352.5 (4)
C8—C9—C10—C110.1 (4)C28—C29—C30—C310.6 (6)
C15—C9—C10—C11178.7 (3)C35—C29—C30—C31179.4 (4)
C9—C10—C11—C121.6 (6)C29—C30—C31—C320.9 (8)
C10—C11—C12—C130.7 (6)C30—C31—C32—C330.8 (8)
C11—C12—C13—C81.6 (5)C29—C28—C33—C320.3 (4)
C11—C12—C13—C14178.5 (3)N2—C28—C33—C32178.7 (3)
C9—C8—C13—C123.2 (4)C29—C28—C33—C34179.2 (3)
N1—C8—C13—C12175.1 (2)N2—C28—C33—C340.8 (4)
C9—C8—C13—C14176.9 (3)C31—C32—C33—C280.5 (6)
N1—C8—C13—C144.8 (4)C31—C32—C33—C34179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.192.949 (2)147
N2—H2N···O2ii0.862.172.949 (2)150
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, Pc
Temperature (K)295
a, b, c (Å)16.4389 (8), 8.2903 (4), 9.4902 (3)
β (°) 98.165 (4)
V3)1280.25 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.52 × 0.46 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.924, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
38015, 2504, 2110
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 0.98
No. of reflections2504
No. of parameters307
No. of restraints35
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14
Absolute structureFlack (1983), 2493 Friedel pairs

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.192.949 (2)147.4
N2—H2N···O2ii0.862.172.949 (2)149.8
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds (Interreg IIIA) for financial support in the purchase of the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds