organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol monohydrate

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, People's Republic of China
*Correspondence e-mail: zhangwenzhi1968@yahoo.com.cn

(Received 18 June 2008; accepted 18 June 2008; online 25 June 2008)

The asymmetric unit of the title compound, C19H12N4O·H2O, contains one organic molecule and one solvent water mol­ecule, which are connected by N—H⋯O and O—H⋯N hydrogen bonds. In addition, there is one intra­molecular O—H⋯N hydrogen bond. The organic mol­ecule is essentially planar (r.m.s. deviation for all non-H atoms = 0.028 Å).

Related literature

For related literature, see: Yin (2008[Yin, G.-Q. (2008). Acta Cryst. E64, o1236.]). For a related structure, see: Sun et al. (2007[Sun, M., Chen, G., Ling, B.-P. & Liu, Y.-X. (2007). Acta Cryst. E63, o1210-o1211.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12N4O·H2O

  • Mr = 330.34

  • Monoclinic, P 21 /c

  • a = 4.5272 (9) Å

  • b = 19.822 (4) Å

  • c = 16.956 (3) Å

  • β = 94.15 (3)°

  • V = 1517.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.21 × 0.17 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.989

  • 14107 measured reflections

  • 3351 independent reflections

  • 1342 reflections with I > 2σ(I)

  • Rint = 0.177

Refinement
  • R[F2 > 2σ(F2)] = 0.094

  • wR(F2) = 0.205

  • S = 1.02

  • 3351 reflections

  • 232 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3 0.82 1.83 2.569 (5) 149
N4—H4⋯O1W 0.86 1.90 2.744 (4) 169
O1W—HW12⋯N2i 0.863 (18) 1.91 (2) 2.715 (5) 155 (4)
O1W—HW12⋯N1i 0.863 (18) 2.62 (4) 3.255 (5) 131 (3)
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-Phenanthroline and its derivatives are commonly used as ligands in metal-organic coordination polymers (Sun et al., 2007; Yin, 2008). The title compound was synthesized from [4,5-f]1,10-phenanthroline. All bond lengths are within normal ranges. The H2O molecules links the 2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol molecules by hydrogen bonds to the nitrogen atoms of the imidazo-phenantholine ring systems.

Related literature top

For related literature, see: Yin (2008). For related structures, see: Sun et al. (2007).

Experimental top

1,10-Phenanthroline-5,6-dione (1.5 mmol) and 2-hydroxybenzaldehyde (1.5 mmol) were dissolved in CH3COOHCH3COONH4 (1:1) solution (30 ml). The mixture was refluxed for 1.5 h under argon, after cooling, this mixture was diluted with water and neutralized with concentrated aqueous ammonia, immediately resulting a yellow precipitate, which was washed with water, acetone and diethyl ether respectively. Crystals of the title compound were obtained by recrystallization from dichloromethane.

Refinement top

C- and N-bound H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93-0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85±0.01 Å and HW11···HW12 = 1.35±0.01 Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol monohydrate top
Crystal data top
C19H12N4O·H2OF(000) = 688
Mr = 330.34Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6908 reflections
a = 4.5272 (9) Åθ = 3.0–27.5°
b = 19.822 (4) ŵ = 0.10 mm1
c = 16.956 (3) ÅT = 293 K
β = 94.15 (3)°Block, pale yellow
V = 1517.6 (5) Å30.21 × 0.17 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3351 independent reflections
Radiation source: rotating anode1342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.177
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 55
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2525
Tmin = 0.975, Tmax = 0.989l = 2121
14107 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.094Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0767P)2]
where P = (Fo2 + 2Fc2)/3
3351 reflections(Δ/σ)max = 0.006
232 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H12N4O·H2OV = 1517.6 (5) Å3
Mr = 330.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5272 (9) ŵ = 0.10 mm1
b = 19.822 (4) ÅT = 293 K
c = 16.956 (3) Å0.21 × 0.17 × 0.15 mm
β = 94.15 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3351 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1342 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.989Rint = 0.177
14107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0943 restraints
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
3351 reflectionsΔρmin = 0.21 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8402 (11)0.1329 (2)1.0945 (2)0.0583 (13)
H10.95020.13131.14290.070*
C20.6283 (11)0.0844 (3)1.0794 (2)0.0632 (14)
H20.59330.05191.11720.076*
C30.4704 (10)0.0846 (2)1.0080 (2)0.0568 (12)
H30.32340.05260.99640.068*
C40.5324 (9)0.1337 (2)0.9525 (2)0.0454 (11)
C50.7451 (9)0.1833 (2)0.9742 (2)0.0436 (10)
C60.8102 (9)0.2370 (2)0.9201 (2)0.0434 (10)
C71.0598 (11)0.3337 (2)0.8980 (3)0.0622 (13)
H71.19260.36690.91630.075*
C80.6649 (9)0.2387 (2)0.8427 (2)0.0414 (10)
C90.3919 (9)0.1377 (2)0.8750 (2)0.0419 (10)
C100.4603 (9)0.1867 (2)0.8232 (2)0.0413 (10)
C110.1276 (9)0.1180 (2)0.7673 (2)0.0421 (10)
C120.0845 (9)0.0871 (2)0.7108 (2)0.0467 (11)
C130.2259 (10)0.0279 (2)0.7296 (3)0.0544 (12)
C140.4299 (11)0.0019 (3)0.6760 (3)0.0685 (14)
H140.52680.04110.68950.082*
C150.4894 (11)0.0265 (3)0.6030 (3)0.0740 (16)
H150.62680.00620.56710.089*
C160.1476 (10)0.1140 (2)0.6352 (2)0.0610 (13)
H160.05060.15290.62050.073*
C170.3502 (11)0.0840 (3)0.5825 (3)0.0717 (15)
H170.39240.10280.53270.086*
C180.9353 (10)0.3391 (2)0.8210 (2)0.0587 (13)
H180.98710.37450.78870.070*
C190.7362 (10)0.2917 (2)0.7935 (2)0.0486 (11)
H190.64850.29460.74230.058*
O10.1730 (7)0.00281 (16)0.80052 (18)0.0763 (11)
H1A0.04990.01890.82780.114*
N11.0015 (8)0.28440 (19)0.94675 (19)0.0546 (10)
N20.9002 (8)0.18203 (19)1.04526 (18)0.0504 (10)
N30.1823 (7)0.09440 (17)0.84045 (18)0.0449 (9)
N40.2873 (7)0.17430 (17)0.75510 (17)0.0458 (9)
H40.28140.19790.71250.055*
O1W0.3484 (8)0.24505 (18)0.61814 (17)0.0688 (10)
HW120.195 (7)0.257 (2)0.588 (2)0.083*
HW110.444 (9)0.219 (2)0.590 (2)0.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.074 (4)0.061 (3)0.039 (2)0.011 (3)0.006 (2)0.001 (2)
C20.075 (4)0.071 (4)0.044 (3)0.008 (3)0.004 (2)0.013 (2)
C30.064 (3)0.055 (3)0.052 (3)0.001 (3)0.007 (2)0.008 (2)
C40.049 (3)0.048 (3)0.039 (2)0.007 (2)0.0045 (19)0.002 (2)
C50.046 (3)0.044 (3)0.041 (2)0.008 (2)0.0006 (19)0.003 (2)
C60.045 (3)0.039 (3)0.046 (2)0.005 (2)0.002 (2)0.005 (2)
C70.069 (4)0.053 (3)0.063 (3)0.012 (3)0.009 (2)0.009 (3)
C80.043 (3)0.040 (3)0.041 (2)0.007 (2)0.0010 (19)0.0004 (19)
C90.040 (3)0.039 (3)0.047 (2)0.001 (2)0.0010 (19)0.000 (2)
C100.039 (3)0.042 (3)0.041 (2)0.004 (2)0.0061 (19)0.001 (2)
C110.043 (3)0.035 (2)0.047 (2)0.009 (2)0.0010 (19)0.003 (2)
C120.044 (3)0.042 (3)0.053 (3)0.004 (2)0.004 (2)0.002 (2)
C130.055 (3)0.046 (3)0.062 (3)0.006 (2)0.002 (2)0.006 (2)
C140.060 (4)0.056 (3)0.088 (4)0.010 (3)0.001 (3)0.022 (3)
C150.066 (4)0.078 (4)0.075 (4)0.003 (3)0.016 (3)0.022 (3)
C160.058 (3)0.057 (3)0.066 (3)0.001 (3)0.009 (2)0.003 (3)
C170.072 (4)0.071 (4)0.069 (3)0.001 (3)0.019 (3)0.007 (3)
C180.069 (4)0.049 (3)0.057 (3)0.007 (2)0.001 (2)0.004 (2)
C190.054 (3)0.046 (3)0.046 (2)0.001 (2)0.000 (2)0.002 (2)
O10.077 (2)0.066 (2)0.083 (2)0.0178 (19)0.0115 (18)0.0141 (19)
N10.063 (3)0.047 (2)0.053 (2)0.011 (2)0.0019 (18)0.0013 (19)
N20.059 (2)0.052 (2)0.0394 (19)0.0082 (19)0.0000 (17)0.0002 (18)
N30.043 (2)0.046 (2)0.0449 (19)0.0014 (18)0.0012 (16)0.0004 (17)
N40.046 (2)0.044 (2)0.0463 (19)0.0008 (18)0.0033 (16)0.0060 (17)
O1W0.077 (3)0.071 (3)0.0559 (19)0.000 (2)0.0092 (16)0.0158 (17)
Geometric parameters (Å, º) top
C1—N21.323 (5)C11—N31.332 (5)
C1—C21.370 (6)C11—N41.353 (5)
C1—H10.9300C11—C121.443 (5)
C2—C31.360 (5)C12—C131.384 (6)
C2—H20.9300C12—C161.400 (5)
C3—C41.397 (5)C13—O11.353 (5)
C3—H30.9300C13—C141.380 (6)
C4—C51.407 (6)C14—C151.368 (6)
C4—C91.420 (5)C14—H140.9300
C5—N21.351 (4)C15—C171.360 (7)
C5—C61.449 (5)C15—H150.9300
C6—N11.334 (5)C16—C171.370 (6)
C6—C81.424 (5)C16—H160.9300
C7—N11.318 (5)C17—H170.9300
C7—C181.389 (5)C18—C191.361 (6)
C7—H70.9300C18—H180.9300
C8—C191.393 (5)C19—H190.9300
C8—C101.410 (5)O1—H1A0.8200
C9—C101.360 (5)N4—H40.8600
C9—N31.378 (5)O1W—HW120.863 (18)
C10—N41.370 (4)O1W—HW110.841 (18)
N2—C1—C2124.9 (4)C13—C12—C16117.8 (4)
N2—C1—H1117.5C13—C12—C11120.3 (4)
C2—C1—H1117.5C16—C12—C11121.8 (4)
C3—C2—C1118.7 (4)O1—C13—C14117.4 (4)
C3—C2—H2120.7O1—C13—C12122.0 (4)
C1—C2—H2120.7C14—C13—C12120.6 (4)
C2—C3—C4118.9 (4)C15—C14—C13119.9 (5)
C2—C3—H3120.5C15—C14—H14120.1
C4—C3—H3120.5C13—C14—H14120.1
C3—C4—C5118.6 (4)C17—C15—C14120.8 (5)
C3—C4—C9124.4 (4)C17—C15—H15119.6
C5—C4—C9117.1 (4)C14—C15—H15119.6
N2—C5—C4121.4 (4)C17—C16—C12121.0 (5)
N2—C5—C6117.6 (4)C17—C16—H16119.5
C4—C5—C6121.0 (3)C12—C16—H16119.5
N1—C6—C8122.8 (4)C15—C17—C16119.8 (5)
N1—C6—C5117.3 (3)C15—C17—H17120.1
C8—C6—C5119.9 (4)C16—C17—H17120.1
N1—C7—C18124.1 (4)C19—C18—C7118.8 (4)
N1—C7—H7117.9C19—C18—H18120.6
C18—C7—H7117.9C7—C18—H18120.6
C19—C8—C10126.0 (3)C18—C19—C8119.5 (4)
C19—C8—C6117.2 (4)C18—C19—H19120.3
C10—C8—C6116.8 (4)C8—C19—H19120.3
C10—C9—N3110.6 (3)C13—O1—H1A109.5
C10—C9—C4122.0 (4)C7—N1—C6117.6 (4)
N3—C9—C4127.4 (4)C1—N2—C5117.4 (4)
C9—C10—N4105.8 (3)C11—N3—C9104.6 (3)
C9—C10—C8123.2 (3)C11—N4—C10107.3 (3)
N4—C10—C8130.9 (4)C11—N4—H4126.3
N3—C11—N4111.5 (3)C10—N4—H4126.3
N3—C11—C12122.5 (4)HW12—O1W—HW11105 (3)
N4—C11—C12125.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N30.821.832.569 (5)149
N4—H4···O1W0.861.902.744 (4)169
O1W—HW12···N2i0.86 (2)1.91 (2)2.715 (5)155 (4)
O1W—HW12···N1i0.86 (2)2.62 (4)3.255 (5)131 (3)
Symmetry code: (i) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H12N4O·H2O
Mr330.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.5272 (9), 19.822 (4), 16.956 (3)
β (°) 94.15 (3)
V3)1517.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.17 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.975, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
14107, 3351, 1342
Rint0.177
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.205, 1.03
No. of reflections3351
No. of parameters232
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N30.821.832.569 (5)148.9
N4—H4···O1W0.861.902.744 (4)168.6
O1W—HW12···N2i0.863 (18)1.91 (2)2.715 (5)155 (4)
O1W—HW12···N1i0.863 (18)2.62 (4)3.255 (5)131 (3)
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (No. 1152 G053).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, M., Chen, G., Ling, B.-P. & Liu, Y.-X. (2007). Acta Cryst. E63, o1210–o1211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, G.-Q. (2008). Acta Cryst. E64, o1236.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds