organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1348-o1349

(3S,3aS,5aS,7S,8S,10aS,10bR)-7,8-Dihydr­­oxy-3-iso­propyl-5a,8-di­methyl-2,3,4,5,5a,6,7,8,10a,10b-deca­hydro­cyclo­hepta­[e]indene-3a(1H)-carboxylic acid

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 20 June 2008; accepted 23 June 2008; online 28 June 2008)

The mol­ecule of the title compound, C20H32O4, is built up from three fused five-membered, six-membered and seven-membered rings. The five-membered ring has an envelope conformation, whereas the six- and seven-membered rings have chair conformations. The crystal structure is stabilized by strong inter­molecular O—H⋯O hydrogen bonds, forming a three-dimensional network. The absolute configuration was assigned on the basis of earlier chemical studies.

Related literature

For related literature, see: Araya et al. (2003[Araya, J. E., Neira, I., Da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 98, 413-418.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Fuentes et al. (2005[Fuentes, N. L., Sagua, H., Morales, G., Bórquez, J., San-Martín, A., Soto, J. & Loyola, L. A. (2005). Phytother. Res. 19, 713-716.]); Loyola et al. (1996[Loyola, L., Bórquez, J., Morales, B. & San Martín, A. (1996). Phytochemistry, 43, 165-168.], 2004[Loyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931-1935.]); Wickens (1995[Wickens, G. E. (1995). Econ. Bot. 49, 207-212.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32O4

  • Mr = 336.46

  • Orthorhombic, P 21 21 21

  • a = 11.094 (7) Å

  • b = 12.728 (10) Å

  • c = 13.8776 (11) Å

  • V = 1959.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 9149 measured reflections

  • 1922 independent reflections

  • 1836 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.13

  • 1922 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.80 2.613 (3) 170
O3—H3⋯O2ii 0.82 2.01 2.825 (3) 173
O4—H4⋯O3iii 0.82 1.94 2.752 (3) 172
C1—H1B⋯O2 0.97 2.44 2.889 (4) 108
C5—H5B⋯O1 0.97 2.51 3.054 (4) 116
C6—H6B⋯O4 0.97 2.52 2.901 (3) 104
C16—H16A⋯O3 0.96 2.46 2.809 (4) 101
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York; Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Azorella compacta is a compact resinous cushion shrub that grows in the Andes of Peru, Bolivia, Argentina and Chile and has been used in folk medicine. The common name llareta is used for several species of the genus Azorella (Wickens, 1995). Mulinane diterpenes exhibits antiplasmodial (Loyola et al., 2004), anti-Tripanosoma cruzi (Araya et al., 2003) and antihyperglycemic (Fuentes et al., 2005) activities.We have undertaken the X-ray crystal-structure determination of the title compound in order to establish its molecular conformation and relative stereochemistry. We are not able to determine the absolute stereochemistry by X-ray methods and the configuration shown here was chosen to be in accord with that reported in previous chemical studies (Loyola et al., 1996). The structure consists of a mulinic acid skeleton and the isopropyl, methyl groups and carboxylic acid at C3, C5a, C8 and C3b are α-oriented respectively, whereas the hydroxyl groups at C8 and C7 are β-oriented. The cyclopentane (A), cyclohexane (B) and cycloheptene (C) rings are in an envelope, chair and chair conformation respectively [Q2 = 0.435 (2) Å, ϕ2= 118.7 (3)° for rig A; QT= 0.581 (2) Å, θ = 174.4 (2)°, ϕ=131 (2)° for ring B; QT= 0.634 (2) Å, ϕ2=78.4 (6)°, for ring C] (Cremer & Pople, 1975). The A and B and B and C rings are trans and cis-fused respectively. The molecular conformation is stabilized by four intramolecular hydrogen bonds and the crystal structure is stabilized by three intermolecular hydrogen bonds (Table 1).

Related literature top

For related literature, see: Araya et al. (2003); Cremer & Pople (1975); Fuentes et al. (2005); Loyola et al. (1996, 2004); Wickens (1995).

Experimental top

Dried and finely powdered whole plant of Azorella compacta (3,0 kg) were extracted with petroleum ether at room temperature. After filtration, the solvent was evaporated in vacuum yielding a gum (220 g). The concentrated petrol ether extract was adsorbed on silica gel (300 g) and slurried onto the top of a column containing silica gel (2.0 kg) in petroleum ether, and eluted with a petroleum ether/ethyl acetate gradient with increasing amounts of ethyl acetate to produce six fractions. Fraction 2 (100 g) eluted with petroleum ether/ethyl acetate(18:2) was further separated and purified by silica gel column chromatography(petroleum ether/ethyl acetate), 19:1) to give 600 mg of the title compound. The structure were elucidated by analysis of their spectroscopic data. Recrystallization from hexane-ethyl acetate (7:3) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms were located on a difference Fourier map and then treated as riding atoms, with C - H bond lengths in the range 0.96 - 0.98 Å and O - H distances of 0.82 Å. For methyl atoms, Uiso(H) = 1.5Ueq(C), while for other H atoms, Uiso(H) = 1.2Ueq(C, O). In the absence of significant anomalous scattering effects, Friedel pairs were averaged. The absolute configuration shown here was chosen to be in accord with that reported in previous chemical studies (Loyola et al., 1996).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
(3S,3aS,5aS,7S,8S,10aS,10bR)-7,8-Dihydroxy-3-isopropyl-5a,8-dimethyl-2,3,4,5,5a,6,7,8,10a,10b-decahydrocyclohepta[e]indene-3a(1H)-carboxylic acid top
Crystal data top
C20H32O4F(000) = 736
Mr = 336.46Dx = 1.14 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5686 reflections
a = 11.094 (7) Åθ = 2.3–25.2°
b = 12.728 (10) ŵ = 0.08 mm1
c = 13.8776 (11) ÅT = 298 K
V = 1959.6 (19) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1836 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.2°, θmin = 2.4°
ϕ scans, and ω scans with κ offsetsh = 913
9149 measured reflectionsk = 1115
1922 independent reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.1473P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.005
S = 1.13Δρmax = 0.21 e Å3
1922 reflectionsΔρmin = 0.14 e Å3
226 parameters
Crystal data top
C20H32O4V = 1959.6 (19) Å3
Mr = 336.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.094 (7) ŵ = 0.08 mm1
b = 12.728 (10) ÅT = 298 K
c = 13.8776 (11) Å0.30 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1836 reflections with I > 2σ(I)
9149 measured reflectionsRint = 0.072
1922 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.13Δρmax = 0.21 e Å3
1922 reflectionsΔρmin = 0.14 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22790 (18)0.80481 (16)0.67764 (12)0.0550 (5)
H10.23710.79690.61950.066 (2)*
O20.39658 (15)0.89409 (15)0.66282 (11)0.0497 (5)
O30.01429 (13)1.24195 (13)1.01859 (10)0.0361 (4)
H30.04081.19861.05680.066 (2)*
O40.27135 (13)1.21546 (12)0.99028 (10)0.0352 (4)
H40.34221.23210.98350.066 (2)*
C10.44994 (19)1.03680 (17)0.81893 (16)0.0368 (5)
H1A0.47781.09710.85540.046 (2)*
H1B0.47451.04460.75220.046 (2)*
C20.4986 (2)0.93369 (19)0.86208 (19)0.0431 (6)
H2A0.53960.94770.92240.046 (2)*
H2B0.55540.90140.8180.046 (2)*
C30.3898 (2)0.85939 (16)0.87930 (14)0.0338 (5)
H3A0.36420.86990.94620.041*
C3A0.28837 (18)0.90550 (15)0.81408 (13)0.0278 (4)
C40.15886 (19)0.88598 (16)0.84672 (15)0.0330 (4)
H4A0.15240.89940.91530.046 (2)*
H4B0.13810.8130.83550.046 (2)*
C50.0704 (2)0.95643 (19)0.79272 (17)0.0407 (5)
H5A0.00970.94390.81820.046 (2)*
H5B0.06980.93540.72550.046 (2)*
C5A0.09599 (19)1.07500 (17)0.79757 (15)0.0343 (5)
C60.06692 (18)1.11212 (16)0.90075 (14)0.0329 (4)
H6A0.01361.08750.91590.046 (2)*
H6B0.12171.07580.94380.046 (2)*
C70.07182 (19)1.22815 (17)0.92647 (14)0.0322 (4)
H70.02321.26580.87870.039*
C80.1969 (2)1.27901 (16)0.92731 (15)0.0332 (5)
C90.2535 (2)1.28268 (17)0.82860 (15)0.0377 (5)
H90.28271.34810.80990.045*
C100.2678 (2)1.20670 (18)0.76493 (15)0.0390 (5)
H100.30861.22650.70930.047*
C10A0.22889 (19)1.09300 (16)0.76724 (13)0.0319 (4)
H10A0.23541.06750.70080.038*
C10B0.31312 (18)1.02422 (15)0.82710 (13)0.0286 (4)
H10B0.29361.03970.89450.034*
C110.4236 (2)0.74293 (17)0.86931 (15)0.0398 (5)
H110.46060.73350.80580.048*
C120.5173 (3)0.7132 (3)0.9447 (2)0.0599 (8)
H12A0.58440.76070.94080.066 (2)*
H12B0.54480.64270.93310.066 (2)*
H12C0.4820.71731.00770.066 (2)*
C130.3176 (3)0.6675 (2)0.8759 (3)0.0675 (9)
H13A0.27660.67770.93620.066 (2)*
H13B0.34630.59650.87210.066 (2)*
H13C0.26280.68080.82380.066 (2)*
C140.31036 (18)0.86941 (16)0.71064 (13)0.0301 (4)
C150.0128 (3)1.1305 (2)0.72577 (19)0.0545 (7)
H15A0.02561.10220.66250.066 (2)*
H15B0.03031.20440.72540.066 (2)*
H15C0.06961.11980.74440.066 (2)*
C160.1909 (3)1.39039 (18)0.9685 (2)0.0525 (6)
H16A0.15861.3881.03260.066 (2)*
H16B0.13991.4330.92850.066 (2)*
H16C0.27041.420.97020.066 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0571 (10)0.0727 (11)0.0351 (9)0.0269 (10)0.0080 (8)0.0216 (8)
O20.0426 (9)0.0711 (12)0.0353 (8)0.0131 (8)0.0105 (7)0.0178 (8)
O30.0291 (7)0.0475 (9)0.0318 (8)0.0110 (6)0.0051 (6)0.0001 (6)
O40.0272 (7)0.0449 (8)0.0335 (7)0.0028 (7)0.0012 (6)0.0082 (6)
C10.0314 (11)0.0364 (10)0.0427 (11)0.0054 (9)0.0010 (9)0.0081 (9)
C20.0300 (10)0.0459 (12)0.0534 (14)0.0010 (10)0.0109 (10)0.0080 (10)
C30.0382 (11)0.0376 (10)0.0255 (9)0.0046 (9)0.0058 (8)0.0040 (8)
C3A0.0273 (9)0.0316 (9)0.0245 (9)0.0005 (8)0.0013 (8)0.0027 (7)
C40.0304 (9)0.0366 (10)0.0320 (9)0.0052 (8)0.0054 (8)0.0059 (8)
C50.0281 (10)0.0482 (12)0.0457 (12)0.0008 (9)0.0036 (9)0.0128 (10)
C5A0.0308 (10)0.0420 (11)0.0302 (10)0.0071 (9)0.0045 (8)0.0040 (8)
C60.0252 (9)0.0400 (10)0.0337 (10)0.0016 (8)0.0015 (8)0.0007 (8)
C70.0290 (9)0.0411 (10)0.0264 (9)0.0112 (9)0.0033 (8)0.0017 (8)
C80.0369 (10)0.0317 (9)0.0310 (10)0.0064 (9)0.0034 (8)0.0015 (8)
C90.0434 (12)0.0321 (9)0.0377 (11)0.0021 (9)0.0084 (9)0.0100 (8)
C100.0462 (12)0.0413 (11)0.0294 (10)0.0074 (10)0.0113 (9)0.0084 (8)
C10A0.0372 (10)0.0383 (10)0.0201 (8)0.0061 (9)0.0026 (8)0.0012 (7)
C10B0.0285 (10)0.0310 (9)0.0263 (9)0.0004 (8)0.0019 (7)0.0029 (7)
C110.0444 (12)0.0388 (11)0.0362 (11)0.0101 (10)0.0013 (10)0.0028 (8)
C120.0706 (18)0.0638 (16)0.0454 (13)0.0282 (15)0.0104 (13)0.0082 (11)
C130.0611 (18)0.0407 (13)0.101 (2)0.0003 (13)0.0004 (17)0.0144 (14)
C140.0301 (9)0.0331 (9)0.0272 (9)0.0010 (8)0.0024 (8)0.0027 (7)
C150.0484 (13)0.0693 (16)0.0458 (13)0.0188 (13)0.0178 (12)0.0044 (13)
C160.0619 (15)0.0367 (12)0.0588 (15)0.0006 (11)0.0168 (13)0.0067 (11)
Geometric parameters (Å, º) top
O1—C141.312 (3)C6—C71.520 (3)
O1—H10.82C6—H6A0.97
O2—C141.206 (3)C6—H6B0.97
O3—C71.440 (2)C7—C81.531 (3)
O3—H30.82C7—H70.98
O4—C81.449 (3)C8—C91.508 (3)
O4—H40.82C8—C161.530 (3)
C1—C10B1.531 (3)C9—C101.319 (3)
C1—C21.540 (3)C9—H90.93
C1—H1A0.97C10—C10A1.510 (3)
C1—H1B0.97C10—H100.93
C2—C31.551 (3)C10A—C10B1.526 (3)
C2—H2A0.97C10A—H10A0.98
C2—H2B0.97C10B—H10B0.98
C3—C111.535 (3)C11—C121.523 (3)
C3—C3A1.559 (3)C11—C131.521 (4)
C3—H3A0.98C11—H110.98
C3A—C41.527 (3)C12—H12A0.96
C3A—C141.527 (3)C12—H12B0.96
C3A—C10B1.546 (3)C12—H12C0.96
C4—C51.526 (3)C13—H13A0.96
C4—H4A0.97C13—H13B0.96
C4—H4B0.97C13—H13C0.96
C5—C5A1.537 (3)C15—H15A0.96
C5—H5A0.97C15—H15B0.96
C5—H5B0.97C15—H15C0.96
C5A—C151.531 (3)C16—H16A0.96
C5A—C61.542 (3)C16—H16B0.96
C5A—C10A1.550 (3)C16—H16C0.96
C14—O1—H1109.5O4—C8—C9109.10 (16)
C7—O3—H3109.5O4—C8—C16108.5 (2)
C8—O4—H4109.5C9—C8—C16109.20 (18)
C10B—C1—C2103.26 (18)O4—C8—C7106.57 (16)
C10B—C1—H1A111.1C9—C8—C7112.58 (18)
C2—C1—H1A111.1C16—C8—C7110.82 (19)
C10B—C1—H1B111.1C10—C9—C8129.5 (2)
C2—C1—H1B111.1C10—C9—H9115.3
H1A—C1—H1B109.1C8—C9—H9115.3
C1—C2—C3107.89 (18)C9—C10—C10A130.8 (2)
C1—C2—H2A110.1C9—C10—H10114.6
C3—C2—H2A110.1C10A—C10—H10114.6
C1—C2—H2B110.1C10—C10A—C10B112.72 (18)
C3—C2—H2B110.1C10—C10A—C5A114.76 (18)
H2A—C2—H2B108.4C10B—C10A—C5A110.47 (16)
C11—C3—C2112.66 (19)C10—C10A—H10A106.1
C11—C3—C3A119.15 (17)C10B—C10A—H10A106.1
C2—C3—C3A104.03 (17)C5A—C10A—H10A106.1
C11—C3—H3A106.8C10A—C10B—C1120.45 (18)
C2—C3—H3A106.8C10A—C10B—C3A112.84 (16)
C3A—C3—H3A106.8C1—C10B—C3A105.65 (16)
C4—C3A—C14112.35 (16)C10A—C10B—H10B105.6
C4—C3A—C10B106.94 (16)C1—C10B—H10B105.6
C14—C3A—C10B112.05 (16)C3A—C10B—H10B105.6
C4—C3A—C3116.49 (17)C12—C11—C13109.3 (2)
C14—C3A—C3108.49 (16)C12—C11—C3110.2 (2)
C10B—C3A—C399.89 (15)C13—C11—C3114.5 (2)
C3A—C4—C5111.34 (17)C12—C11—H11107.5
C3A—C4—H4A109.4C13—C11—H11107.5
C5—C4—H4A109.4C3—C11—H11107.5
C3A—C4—H4B109.4C11—C12—H12A109.5
C5—C4—H4B109.4C11—C12—H12B109.5
H4A—C4—H4B108H12A—C12—H12B109.5
C4—C5—C5A115.89 (18)C11—C12—H12C109.5
C4—C5—H5A108.3H12A—C12—H12C109.5
C5A—C5—H5A108.3H12B—C12—H12C109.5
C4—C5—H5B108.3C11—C13—H13A109.5
C5A—C5—H5B108.3C11—C13—H13B109.5
H5A—C5—H5B107.4H13A—C13—H13B109.5
C15—C5A—C5108.27 (19)C11—C13—H13C109.5
C15—C5A—C6109.69 (18)H13A—C13—H13C109.5
C5—C5A—C6107.63 (18)H13B—C13—H13C109.5
C15—C5A—C10A109.16 (19)O2—C14—O1121.61 (18)
C5—C5A—C10A107.99 (17)O2—C14—C3A124.46 (18)
C6—C5A—C10A113.94 (17)O1—C14—C3A113.90 (17)
C7—C6—C5A120.54 (18)C5A—C15—H15A109.5
C7—C6—H6A107.2C5A—C15—H15B109.5
C5A—C6—H6A107.2H15A—C15—H15B109.5
C7—C6—H6B107.2C5A—C15—H15C109.5
C5A—C6—H6B107.2H15A—C15—H15C109.5
H6A—C6—H6B106.8H15B—C15—H15C109.5
O3—C7—C6108.13 (17)C8—C16—H16A109.5
O3—C7—C8110.08 (17)C8—C16—H16B109.5
C6—C7—C8116.42 (17)H16A—C16—H16B109.5
O3—C7—H7107.3C8—C16—H16C109.5
C6—C7—H7107.3H16A—C16—H16C109.5
C8—C7—H7107.3H16B—C16—H16C109.5
C10B—C1—C2—C38.2 (2)C9—C10—C10A—C10B79.8 (3)
C1—C2—C3—C11149.26 (18)C9—C10—C10A—C5A47.8 (3)
C1—C2—C3—C3A18.8 (2)C15—C5A—C10A—C1060.6 (2)
C11—C3—C3A—C481.3 (2)C5—C5A—C10A—C10178.06 (18)
C2—C3—C3A—C4152.25 (18)C6—C5A—C10A—C1062.4 (2)
C11—C3—C3A—C1446.6 (2)C15—C5A—C10A—C10B170.67 (17)
C2—C3—C3A—C1479.8 (2)C5—C5A—C10A—C10B53.2 (2)
C11—C3—C3A—C10B164.02 (18)C6—C5A—C10A—C10B66.3 (2)
C2—C3—C3A—C10B37.57 (19)C10—C10A—C10B—C143.1 (2)
C14—C3A—C4—C568.2 (2)C5A—C10A—C10B—C1172.95 (17)
C10B—C3A—C4—C555.2 (2)C10—C10A—C10B—C3A169.03 (16)
C3—C3A—C4—C5165.83 (16)C5A—C10A—C10B—C3A61.1 (2)
C3A—C4—C5—C5A55.1 (2)C2—C1—C10B—C10A162.12 (17)
C4—C5—C5A—C15170.12 (19)C2—C1—C10B—C3A32.9 (2)
C4—C5—C5A—C671.4 (2)C4—C3A—C10B—C10A60.5 (2)
C4—C5—C5A—C10A52.0 (2)C14—C3A—C10B—C10A63.1 (2)
C15—C5A—C6—C756.7 (3)C3—C3A—C10B—C10A177.76 (15)
C5—C5A—C6—C7174.27 (18)C4—C3A—C10B—C1165.97 (16)
C10A—C5A—C6—C766.0 (2)C14—C3A—C10B—C170.5 (2)
C5A—C6—C7—O3166.72 (16)C3—C3A—C10B—C144.2 (2)
C5A—C6—C7—C868.8 (2)C2—C3—C11—C1262.0 (3)
O3—C7—C8—O469.69 (19)C3A—C3—C11—C12175.7 (2)
C6—C7—C8—O453.8 (2)C2—C3—C11—C13174.3 (2)
O3—C7—C8—C9170.74 (16)C3A—C3—C11—C1352.1 (3)
C6—C7—C8—C965.8 (2)C4—C3A—C14—O2165.1 (2)
O3—C7—C8—C1648.1 (2)C10B—C3A—C14—O244.7 (3)
C6—C7—C8—C16171.59 (18)C3—C3A—C14—O264.7 (3)
O4—C8—C9—C1067.3 (3)C4—C3A—C14—O117.0 (2)
C16—C8—C9—C10174.3 (3)C10B—C3A—C14—O1137.48 (19)
C7—C8—C9—C1050.8 (3)C3—C3A—C14—O1113.2 (2)
C8—C9—C10—C10A2.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.802.613 (3)170
O3—H3···O2ii0.822.012.825 (3)173
O4—H4···O3iii0.821.942.752 (3)172
C1—H1B···O20.972.442.889 (4)108
C5—H5B···O10.972.513.054 (4)116
C6—H6B···O40.972.522.901 (3)104
C16—H16A···O30.962.462.809 (4)101
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1/2, y+2, z+1/2; (iii) x+1/2, y+5/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H32O4
Mr336.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)11.094 (7), 12.728 (10), 13.8776 (11)
V3)1959.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9149, 1922, 1836
Rint0.072
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.13
No. of reflections1922
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.802.613 (3)170
O3—H3···O2ii0.822.012.825 (3)173
O4—H4···O3iii0.821.942.752 (3)172
C1—H1B···O20.972.442.889 (4)108
C5—H5B···O10.972.513.054 (4)116
C6—H6B···O40.972.522.901 (3)104
C16—H16A···O30.962.462.809 (4)101
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1/2, y+2, z+1/2; (iii) x+1/2, y+5/2, z+2.
 

Acknowledgements

LAL thanks the Fondo Nacional de Desarrollo Científico y Tecnológico de Chile for grant 1060339. We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the Cambridge Structural Database.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAraya, J. E., Neira, I., Da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 98, 413–418.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFuentes, N. L., Sagua, H., Morales, G., Bórquez, J., San-Martín, A., Soto, J. & Loyola, L. A. (2005). Phytother. Res. 19, 713–716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L., Bórquez, J., Morales, B. & San Martín, A. (1996). Phytochemistry, 43, 165–168.  CrossRef CAS Web of Science Google Scholar
First citationLoyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931–1935.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York; Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickens, G. E. (1995). Econ. Bot. 49, 207–212.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1348-o1349
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds