organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(2,3,4-Trimeth­­oxy-6-methyl­benzyl­­idene)aniline

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: zhanghuiwfu@163.com

(Received 20 April 2008; accepted 30 May 2008; online 7 June 2008)

In the title compound, C17H19NO3, the C—C=N—C torsion angle between the benzene and phenyl rings is −177.3 (2)°, and the dihedral angle between the rings is 54.6 (2)°. The crystal structure is stabilized by intra­molecular hydrogen bonds and weak ππ and C—H⋯π inter­actions.

Related literature

For related literature, see: Zhang et al. (2005[Zhang, W.-J., Lu, M., Li, C.-B. & Zhou, W.-Y. (2005). Acta Cryst. E61, o3222-o3223.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO3

  • Mr = 285.33

  • Triclinic, [P \overline 1]

  • a = 8.3126 (13) Å

  • b = 9.9938 (17) Å

  • c = 10.8661 (19) Å

  • α = 110.102 (2)°

  • β = 111.995 (2)°

  • γ = 92.7000 (10)°

  • V = 769.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.50 × 0.48 × 0.47 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.962

  • 3966 measured reflections

  • 2650 independent reflections

  • 1571 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.170

  • S = 1.00

  • 2650 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the ring C12–C17.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.32 2.714 (3) 105
C8—H8C⋯O2 0.96 2.47 3.062 (5) 120
C9—H9C⋯O1 0.96 2.53 3.079 (4) 116
C10—H10CCg2i 0.96 2.98 3.894 (4) 160
Symmetry code: (i) x, y+1, z.

Table 2
ππ interactions (Å, °)

Cg1 is the centroid of the ring C2–C7. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.

CgICgJ CgICgJ Dihedral angle Interplanar distance Offset
Cg1⋯Cg1i 4.236 (1) 0 3.523 (1) 2.352
Symmetry code: (i) 1-x, 1-y, 2-z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The preparation, properties and applications of Schiff bases are important in the development of coordination chemistry. In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles of the title compound agree with those in the related compound 2,3,4-Trimethoxy-6-methylbenzaldehyde (Zhang et al., 2005), as representative example. The dihedral angle between the two phenyl rings is 125.4 (2)°. The crystal structure is stabilized by an intramolecular hydrogen bonding and weak ππ and C—H···π interactions ( Table 1 and Table 2).

Related literature top

For related literature, see: Zhang et al. (2005).

Experimental top

To a solution of p-toluidine (0.535 g, 5 mmol) and potassium acetate (0.980 g, 10 mmol) in distilled water (10 ml), 2,3,4-Trimethoxy-6-methylbenzaldehyde (1.04 g, 5 mmol) in ethylalcohol (20 ml) was added drop by drop, the solution was stirred for 1 h at reflux temperature. The precipitate was filtered and dried. 10 mg of (I) was dissolved in 15 ml ethanol and the solution was allowed to evaporate at room temperature. Straw yellow single crystals of the title compound were formed after one week.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
(E)-N-(2,3,4-Trimethoxy-6-methylbenzylidene)aniline top
Crystal data top
C17H19NO3Z = 2
Mr = 285.33F(000) = 304
Triclinic, P1Dx = 1.231 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3126 (13) ÅCell parameters from 1209 reflections
b = 9.9938 (17) Åθ = 2.4–26.5°
c = 10.8661 (19) ŵ = 0.08 mm1
α = 110.102 (2)°T = 298 K
β = 111.995 (2)°Block, yellow
γ = 92.700 (1)°0.50 × 0.48 × 0.47 mm
V = 769.8 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2650 independent reflections
Radiation source: fine-focus sealed tube1571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 99
Tmin = 0.959, Tmax = 0.962k = 711
3966 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.0591P]
where P = (Fo2 + 2Fc2)/3
2650 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H19NO3γ = 92.700 (1)°
Mr = 285.33V = 769.8 (2) Å3
Triclinic, P1Z = 2
a = 8.3126 (13) ÅMo Kα radiation
b = 9.9938 (17) ŵ = 0.08 mm1
c = 10.8661 (19) ÅT = 298 K
α = 110.102 (2)°0.50 × 0.48 × 0.47 mm
β = 111.995 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1571 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.962Rint = 0.034
3966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2650 reflectionsΔρmin = 0.22 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6434 (3)0.0882 (2)0.7849 (2)0.0637 (6)
O10.1396 (2)0.11706 (18)0.64766 (19)0.0619 (5)
O20.0101 (2)0.3729 (2)0.67375 (19)0.0642 (5)
O30.2329 (2)0.62688 (18)0.78978 (19)0.0626 (5)
C10.4895 (3)0.1089 (3)0.7390 (3)0.0489 (6)
H10.39880.02680.68460.059*
C20.4379 (3)0.2505 (2)0.7625 (2)0.0424 (6)
C30.2546 (3)0.2493 (2)0.7129 (2)0.0457 (6)
C40.1898 (3)0.3749 (3)0.7225 (2)0.0468 (6)
C50.3079 (3)0.5078 (3)0.7853 (2)0.0471 (6)
C60.4884 (3)0.5112 (3)0.8370 (2)0.0470 (6)
H60.56640.60040.88040.056*
C70.5564 (3)0.3853 (3)0.8261 (2)0.0452 (6)
C80.0442 (5)0.0901 (4)0.7236 (4)0.0963 (11)
H8A0.12540.08730.81250.144*
H8B0.03760.00150.66600.144*
H8C0.01980.16630.74380.144*
C90.0840 (4)0.3143 (4)0.5226 (3)0.0889 (11)
H9A0.02450.35860.48150.133*
H9B0.20180.33330.49770.133*
H9C0.09000.21120.48580.133*
C100.3479 (4)0.7643 (3)0.8476 (3)0.0751 (9)
H10A0.42780.78540.94560.113*
H10B0.27900.83850.84480.113*
H10C0.41440.76160.79150.113*
C110.7545 (3)0.4004 (3)0.8838 (3)0.0616 (7)
H11A0.80960.50150.92590.092*
H11B0.78660.34960.80660.092*
H11C0.79360.35990.95580.092*
C120.6728 (3)0.0566 (3)0.7476 (3)0.0504 (6)
C130.7910 (3)0.0901 (3)0.8552 (3)0.0649 (8)
H130.84170.02050.94920.078*
C140.8357 (4)0.2241 (3)0.8266 (4)0.0736 (8)
H140.91560.24510.90090.088*
C150.7636 (5)0.3261 (3)0.6901 (4)0.0758 (9)
H150.79450.41690.67080.091*
C160.6450 (4)0.2958 (3)0.5803 (3)0.0746 (9)
H160.59530.36600.48670.090*
C170.5994 (4)0.1610 (3)0.6089 (3)0.0614 (7)
H170.51900.14040.53450.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0507 (14)0.0530 (14)0.0845 (16)0.0168 (11)0.0250 (12)0.0260 (12)
O10.0464 (10)0.0564 (11)0.0774 (13)0.0030 (8)0.0300 (9)0.0160 (9)
O20.0420 (10)0.0785 (13)0.0730 (13)0.0211 (9)0.0266 (9)0.0264 (10)
O30.0661 (12)0.0558 (11)0.0766 (12)0.0272 (9)0.0343 (10)0.0311 (9)
C10.0447 (15)0.0542 (15)0.0534 (14)0.0107 (12)0.0250 (12)0.0224 (12)
C20.0423 (13)0.0477 (14)0.0424 (13)0.0130 (11)0.0208 (11)0.0194 (10)
C30.0430 (14)0.0489 (15)0.0461 (13)0.0089 (11)0.0227 (11)0.0150 (11)
C40.0398 (14)0.0578 (16)0.0471 (14)0.0158 (12)0.0220 (11)0.0202 (11)
C50.0522 (15)0.0507 (15)0.0475 (14)0.0196 (12)0.0266 (12)0.0219 (11)
C60.0465 (14)0.0481 (14)0.0461 (13)0.0063 (11)0.0197 (11)0.0181 (11)
C70.0427 (14)0.0535 (15)0.0458 (13)0.0130 (12)0.0214 (11)0.0230 (11)
C80.110 (3)0.081 (2)0.134 (3)0.0123 (19)0.084 (3)0.046 (2)
C90.0557 (18)0.108 (3)0.075 (2)0.0228 (18)0.0085 (16)0.0230 (19)
C100.094 (2)0.0561 (18)0.080 (2)0.0248 (16)0.0366 (18)0.0302 (15)
C110.0456 (15)0.0611 (17)0.0775 (18)0.0098 (12)0.0219 (14)0.0304 (14)
C120.0419 (14)0.0499 (15)0.0683 (17)0.0136 (11)0.0293 (13)0.0256 (13)
C130.0525 (16)0.0590 (17)0.0702 (18)0.0132 (13)0.0153 (14)0.0215 (14)
C140.0603 (18)0.071 (2)0.094 (2)0.0209 (15)0.0252 (17)0.0437 (18)
C150.094 (2)0.0582 (19)0.104 (3)0.0350 (17)0.061 (2)0.0383 (18)
C160.099 (2)0.0641 (19)0.0689 (19)0.0214 (17)0.0485 (18)0.0202 (15)
C170.0710 (18)0.0653 (18)0.0662 (18)0.0230 (14)0.0393 (15)0.0334 (15)
Geometric parameters (Å, º) top
N1—C11.244 (3)C9—H9A0.9600
N1—C121.422 (3)C9—H9B0.9600
O1—C31.376 (3)C9—H9C0.9600
O1—C81.416 (3)C10—H10A0.9600
O2—C41.382 (3)C10—H10B0.9600
O2—C91.409 (3)C10—H10C0.9600
O3—C51.363 (3)C11—H11A0.9600
O3—C101.423 (3)C11—H11B0.9600
C1—C21.464 (3)C11—H11C0.9600
C1—H10.9300C12—C131.373 (4)
C2—C71.410 (3)C12—C171.379 (4)
C2—C31.411 (3)C13—C141.370 (4)
C3—C41.375 (3)C13—H130.9300
C4—C51.396 (3)C14—C151.355 (4)
C5—C61.385 (3)C14—H140.9300
C6—C71.389 (3)C15—C161.372 (4)
C6—H60.9300C15—H150.9300
C7—C111.505 (3)C16—C171.380 (4)
C8—H8A0.9600C16—H160.9300
C8—H8B0.9600C17—H170.9300
C8—H8C0.9600
C1—N1—C12119.4 (2)O2—C9—H9C109.5
C3—O1—C8116.2 (2)H9A—C9—H9C109.5
C4—O2—C9114.82 (19)H9B—C9—H9C109.5
C5—O3—C10117.8 (2)O3—C10—H10A109.5
N1—C1—C2126.0 (2)O3—C10—H10B109.5
N1—C1—H1117.0H10A—C10—H10B109.5
C2—C1—H1117.0O3—C10—H10C109.5
C7—C2—C3118.4 (2)H10A—C10—H10C109.5
C7—C2—C1125.0 (2)H10B—C10—H10C109.5
C3—C2—C1116.5 (2)C7—C11—H11A109.5
C4—C3—O1120.0 (2)C7—C11—H11B109.5
C4—C3—C2121.8 (2)H11A—C11—H11B109.5
O1—C3—C2118.1 (2)C7—C11—H11C109.5
C3—C4—O2121.5 (2)H11A—C11—H11C109.5
C3—C4—C5119.4 (2)H11B—C11—H11C109.5
O2—C4—C5119.1 (2)C13—C12—C17118.6 (2)
O3—C5—C6124.8 (2)C13—C12—N1117.4 (2)
O3—C5—C4115.7 (2)C17—C12—N1123.8 (2)
C6—C5—C4119.5 (2)C14—C13—C12121.1 (3)
C5—C6—C7122.0 (2)C14—C13—H13119.4
C5—C6—H6119.0C12—C13—H13119.4
C7—C6—H6119.0C15—C14—C13120.0 (3)
C6—C7—C2118.9 (2)C15—C14—H14120.0
C6—C7—C11117.9 (2)C13—C14—H14120.0
C2—C7—C11123.2 (2)C14—C15—C16120.2 (3)
O1—C8—H8A109.5C14—C15—H15119.9
O1—C8—H8B109.5C16—C15—H15119.9
H8A—C8—H8B109.5C15—C16—C17119.9 (3)
O1—C8—H8C109.5C15—C16—H16120.0
H8A—C8—H8C109.5C17—C16—H16120.0
H8B—C8—H8C109.5C12—C17—C16120.1 (3)
O2—C9—H9A109.5C12—C17—H17119.9
O2—C9—H9B109.5C16—C17—H17119.9
H9A—C9—H9B109.5
C12—N1—C1—C2177.3 (2)O2—C4—C5—C6178.8 (2)
N1—C1—C2—C78.3 (4)O3—C5—C6—C7178.4 (2)
N1—C1—C2—C3173.8 (2)C4—C5—C6—C71.2 (3)
C8—O1—C3—C470.8 (3)C5—C6—C7—C21.1 (3)
C8—O1—C3—C2112.1 (3)C5—C6—C7—C11179.2 (2)
C7—C2—C3—C41.3 (3)C3—C2—C7—C60.2 (3)
C1—C2—C3—C4176.7 (2)C1—C2—C7—C6177.7 (2)
C7—C2—C3—O1178.33 (19)C3—C2—C7—C11179.6 (2)
C1—C2—C3—O10.3 (3)C1—C2—C7—C112.6 (4)
O1—C3—C4—O23.0 (3)C1—N1—C12—C13136.1 (3)
C2—C3—C4—O2180.0 (2)C1—N1—C12—C1748.6 (4)
O1—C3—C4—C5178.2 (2)C17—C12—C13—C140.1 (4)
C2—C3—C4—C51.2 (3)N1—C12—C13—C14175.7 (2)
C9—O2—C4—C372.5 (3)C12—C13—C14—C150.3 (4)
C9—O2—C4—C5108.7 (3)C13—C14—C15—C160.3 (5)
C10—O3—C5—C62.1 (3)C14—C15—C16—C170.2 (4)
C10—O3—C5—C4177.6 (2)C13—C12—C17—C160.0 (4)
C3—C4—C5—O3179.6 (2)N1—C12—C17—C16175.2 (2)
O2—C4—C5—O31.6 (3)C15—C16—C17—C120.0 (4)
C3—C4—C5—C60.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.322.714 (3)105
C8—H8C···O20.962.473.062 (5)120
C9—H9C···O10.962.533.079 (4)116
C10—H10C···Cg2i0.962.983.894 (4)160
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H19NO3
Mr285.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.3126 (13), 9.9938 (17), 10.8661 (19)
α, β, γ (°)110.102 (2), 111.995 (2), 92.700 (1)
V3)769.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.48 × 0.47
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.959, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
3966, 2650, 1571
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.170, 1.00
No. of reflections2650
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.322.714 (3)105
C8—H8C···O20.962.473.062 (5)120.1
C9—H9C···O10.962.533.079 (4)116.2
C10—H10C···Cg2i0.962.983.894 (4)160
Symmetry code: (i) x, y+1, z.
ππ interactions (Å, °) top
Cg1 is the centroid of ring C2–C7. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.
CgI-CgJCgI···CgJDihedral angleInterplanar distanceOffset
Cg1-Cg1i4.236 (1)03.523 (1)2.352
Symmetry code: (i) 1-x, 1-y, 2-z.
 

References

First citationBruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-J., Lu, M., Li, C.-B. & Zhou, W.-Y. (2005). Acta Cryst. E61, o3222–o3223.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds