metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m881-m882

Tetra-μ-benzoato-bis­­[(6-methyl­quino­line)­copper(II)]

aDepartment of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bNational Institute of Animal Science (NIAS), RDA, Suwon 441-350, Republic of Korea, cDepartment of Forest and Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and dDepartment of Chemistry and Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 15 May 2008; accepted 30 May 2008; online 7 June 2008)

In the title compound, [Cu2(C7H5O2)4(C10H9N)2], the paddle-wheel-type dinuclear complex is constructed by four bridging benzoate groups and two terminal 6-methyl­quinoline ligands. The asymmetric unit contains one-half of the whole mol­ecule, and there is an inversion center at the mid-point of the Cu⋯Cu bond. The octa­hedral coordination of each Cu atom, with four O atoms in the equatorial plane, is completed by the N atom of the 6-methyl­quinoline mol­ecule [Cu—N = 2.212 (2) Å] and by another Cu atom [Cu⋯Cu = 2.6939 (13) Å]. The Cu atom lies 0.234 Å out of the plane of the four O atoms. The molecular packing is stabilized by one intramolecular C—H⋯O as well as C—H⋯π and ππ interactions.

Related literature

For related literature, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Chun et al. (2005[Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521-3529.]); Cotton & Walton (1993[Cotton, F. A. & Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press.]); Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]); Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Mines et al. (2002[Mines, G. A., Tzeng, B.-C., Stevenson, K. J., Li, J. & Hupp, J. T. (2002). Angew. Chem. Int. Ed. 41, 154-157.]); Pichon et al. (2007[Pichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449-451.]); Yoo et al. (2003[Yoo, S.-K., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2003). Dalton Trans. pp. 1454-1456.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H5O2)4(C10H9N)2]

  • Mr = 897.88

  • Triclinic, [P \overline 1]

  • a = 10.420 (7) Å

  • b = 10.590 (7) Å

  • c = 10.751 (6) Å

  • α = 70.399 (11)°

  • β = 64.234 (10)°

  • γ = 81.107 (10)°

  • V = 1006.5 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 288 (2) K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.915

  • 5579 measured reflections

  • 3848 independent reflections

  • 3001 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.04

  • 3848 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O11 0.93 2.50 3.047 (4) 118
C2—H2⋯Cg1i 0.93 2.82 3.734 (3) 168
Symmetry code: (i) x, y, z+1.

Table 2
ππ interactions (Å, °)

Cg2 is the centroid of ring C22–C27. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.

CgI CgJ CgICgJ Dihedral angle Interplanar distance Offset
Cg2 Cg2i 3.967 (4) 0 3.39 2.06
Symmetry code: (i) -x+2,-y+2,-z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers comprised of metal ions and bridging ligands represent one of the most active areas of material science and chemical research due to their potential applications as functional materials ranging from catalysis, gas absorption, molecular recognition, optics, and so on (Batten & Robson, 1998; Chun et al., 2005; Mines et al., 2002; Janiak, 2003; Yoo et al., 2003). The continuing interest in this area is also due to their intriguing variety of architectures and topologies through the variation of building blocks and reaction conditions. The dinuclear metal carboxylates, M2(O2CR)4, are one of the important building blocks for the study of structures of coordination polymers (Cotton & Walton, 1993) and copper(II) carboxylates among them are often used as building blocks to form a pillard-grid MOF with large pores (Pichon et al., 2007). We have also used copper(II) benzoate as a building block and reported the structure of copper(II) benzoate with quinoxaline (Lee, et al., 2008). In this work, we have employed 6-methylquinoline to investigate the substituent effect of an organic ligand on the structure of copper-benzoate containing coordination complexes.We report here on the structure of new copper(II) benzoate with 6-methylquinoline.

Asymmetric unit contains half of whole molecule, and there is an inversion center in the middle of Cu—Cu bond. Symmetric operation (-x + 1,-y + 2,-z + 1) produces a paddle-wheel type dinuclear copper-benzoate complex (Fig. 1). The paddle-wheel type dinuclear complex is constructed by four bridging benzoate groups and two terminal 6-methylquinoline ligands. The octahedral coordination of each Cu atom, with four oxygen atoms in the equatorial plane, is completed by nitrogen atom of 6-methylquinoline molecule (Cu—N 2.212 (2) Å) and by another copper atom (Cu···Cu 2.6939 (13) Å). The copper atom is 0.234 Å out of the plane of the four oxygen atoms.In the crystal structure the molecular packing is stabilized by one intramolecular C—H···O as well as C—H···π and π ···π interactions, Table, 1 and 2.

Related literature top

For related literature, see: Batten & Robson (1998); Chun et al. (2005); Cotton & Walton (1993); Janiak (2003); Lee et al. (2008); Mines et al. (2002); Pichon et al. (2007); Yoo et al. (2003).

Experimental top

19.0 mg (0.1 mmol) of Cu(NO3)2.2.5H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml me thanol and carefully layered by 4 ml acetone solution of 6-methylquinoline ligand (29.0 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level.
Tetra-µ-benzoato-bis[(6-methylquinoline)copper(II)] top
Crystal data top
[Cu2(C7H5O2)4(C10H9N)2]Z = 1
Mr = 897.88F(000) = 462
Triclinic, P1Dx = 1.481 Mg m3
a = 10.420 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.590 (7) ÅCell parameters from 1441 reflections
c = 10.751 (6) Åθ = 2.4–19.8°
α = 70.399 (11)°µ = 1.12 mm1
β = 64.234 (10)°T = 288 K
γ = 81.107 (10)°Block, blue
V = 1006.5 (11) Å30.10 × 0.08 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3848 independent reflections
Radiation source: fine-focus sealed tube3001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS: Bruker, 1997)
h = 1212
Tmin = 0.898, Tmax = 0.915k = 1310
5579 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
3848 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu2(C7H5O2)4(C10H9N)2]γ = 81.107 (10)°
Mr = 897.88V = 1006.5 (11) Å3
Triclinic, P1Z = 1
a = 10.420 (7) ÅMo Kα radiation
b = 10.590 (7) ŵ = 1.12 mm1
c = 10.751 (6) ÅT = 288 K
α = 70.399 (11)°0.10 × 0.08 × 0.08 mm
β = 64.234 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3848 independent reflections
Absorption correction: multi-scan
(SADABS: Bruker, 1997)
3001 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.915Rint = 0.021
5579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3848 reflectionsΔρmin = 0.33 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.52984 (3)0.89016 (3)0.59215 (4)0.03698 (14)
N10.6052 (2)0.7261 (2)0.7373 (2)0.0381 (6)
C10.6560 (3)0.7658 (3)0.8104 (3)0.0443 (7)
H10.65660.85740.79580.053*
C20.7091 (3)0.6802 (3)0.9084 (3)0.0468 (8)
H20.74340.71440.95720.056*
C30.7097 (3)0.5470 (3)0.9310 (3)0.0442 (7)
H30.74470.48850.99590.053*
C40.6576 (3)0.4967 (3)0.8567 (3)0.0378 (7)
C50.6493 (3)0.3595 (3)0.8781 (3)0.0449 (7)
H50.68340.29800.94210.054*
C60.5935 (3)0.3131 (3)0.8091 (3)0.0442 (7)
C70.5463 (3)0.4077 (3)0.7091 (3)0.0476 (8)
H70.51040.37750.65870.057*
C80.5519 (3)0.5417 (3)0.6840 (3)0.0433 (7)
H80.52030.60160.61690.052*
C90.6053 (3)0.5905 (3)0.7591 (3)0.0366 (6)
C100.5756 (4)0.1656 (3)0.8414 (4)0.0595 (9)
H10A0.66700.12510.80050.089*
H10B0.51500.15330.80010.089*
H10C0.53320.12430.94440.089*
O110.6763 (2)1.01228 (19)0.5543 (2)0.0489 (5)
O120.3714 (2)0.8060 (2)0.5994 (2)0.0487 (5)
C110.6982 (3)1.1320 (3)0.4734 (3)0.0391 (7)
C120.8146 (3)1.2041 (3)0.4667 (3)0.0383 (7)
C130.8366 (3)1.3391 (3)0.3937 (3)0.0469 (8)
H130.77921.38620.34650.056*
C140.9423 (3)1.4042 (3)0.3903 (3)0.0530 (8)
H140.95541.49540.34170.064*
C151.0290 (3)1.3360 (3)0.4580 (3)0.0549 (9)
H151.10121.38050.45490.066*
C161.0084 (3)1.2030 (3)0.5295 (4)0.0576 (9)
H161.06771.15610.57440.069*
C170.9012 (3)1.1371 (3)0.5361 (3)0.0516 (8)
H170.88671.04650.58770.062*
O210.6535 (2)0.8478 (2)0.4116 (2)0.0510 (6)
O220.3913 (2)0.9690 (2)0.7424 (2)0.0487 (5)
C210.6732 (3)0.9229 (3)0.2858 (3)0.0391 (7)
C220.7844 (3)0.8779 (3)0.1630 (3)0.0409 (7)
C230.8502 (4)0.7562 (4)0.1888 (4)0.0623 (10)
H230.82240.69910.28310.075*
C240.9574 (4)0.7171 (4)0.0763 (4)0.0760 (12)
H241.00190.63410.09500.091*
C250.9985 (4)0.8004 (4)0.0633 (4)0.0680 (10)
H251.07120.77430.13910.082*
C260.9323 (4)0.9216 (4)0.0900 (4)0.0617 (10)
H260.95940.97800.18460.074*
C270.8256 (3)0.9609 (3)0.0223 (3)0.0502 (8)
H270.78091.04380.00320.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0383 (2)0.0324 (2)0.0399 (2)0.00153 (14)0.01945 (16)0.00685 (15)
N10.0415 (14)0.0358 (14)0.0372 (13)0.0001 (10)0.0181 (11)0.0090 (10)
C10.0492 (18)0.0365 (17)0.0453 (18)0.0022 (13)0.0206 (15)0.0078 (13)
C20.0510 (19)0.048 (2)0.0507 (19)0.0009 (14)0.0295 (16)0.0147 (15)
C30.0407 (17)0.0497 (19)0.0418 (17)0.0048 (14)0.0221 (14)0.0085 (14)
C40.0337 (16)0.0377 (16)0.0379 (16)0.0021 (12)0.0144 (13)0.0079 (13)
C50.0423 (17)0.0361 (17)0.0494 (19)0.0059 (13)0.0197 (15)0.0062 (14)
C60.0448 (18)0.0392 (17)0.0448 (18)0.0036 (13)0.0168 (15)0.0120 (14)
C70.0540 (19)0.0469 (19)0.0497 (19)0.0033 (15)0.0251 (16)0.0206 (15)
C80.0528 (19)0.0393 (17)0.0401 (17)0.0006 (14)0.0237 (15)0.0085 (13)
C90.0367 (16)0.0363 (16)0.0331 (15)0.0026 (12)0.0133 (13)0.0068 (12)
C100.073 (2)0.0393 (19)0.070 (2)0.0016 (16)0.034 (2)0.0151 (16)
O110.0497 (13)0.0358 (12)0.0616 (14)0.0046 (9)0.0312 (11)0.0022 (10)
O120.0491 (13)0.0398 (12)0.0585 (13)0.0039 (10)0.0317 (11)0.0017 (10)
C110.0379 (16)0.0363 (17)0.0411 (17)0.0006 (13)0.0132 (14)0.0137 (13)
C120.0350 (16)0.0367 (16)0.0413 (17)0.0002 (12)0.0135 (13)0.0128 (13)
C130.0485 (19)0.0387 (18)0.0525 (19)0.0006 (14)0.0221 (16)0.0104 (14)
C140.058 (2)0.0367 (18)0.058 (2)0.0102 (15)0.0184 (17)0.0102 (15)
C150.0415 (19)0.066 (2)0.058 (2)0.0121 (16)0.0134 (16)0.0248 (18)
C160.048 (2)0.060 (2)0.069 (2)0.0029 (16)0.0319 (18)0.0124 (18)
C170.0471 (19)0.0436 (19)0.061 (2)0.0037 (15)0.0251 (17)0.0070 (15)
O210.0572 (14)0.0438 (13)0.0428 (13)0.0113 (10)0.0182 (11)0.0104 (10)
O220.0509 (13)0.0469 (13)0.0484 (12)0.0108 (10)0.0229 (10)0.0161 (10)
C210.0363 (16)0.0394 (17)0.0476 (19)0.0013 (13)0.0212 (14)0.0145 (14)
C220.0366 (16)0.0488 (19)0.0424 (18)0.0003 (13)0.0196 (14)0.0158 (14)
C230.064 (2)0.067 (2)0.0436 (19)0.0204 (18)0.0191 (18)0.0152 (17)
C240.070 (3)0.082 (3)0.068 (3)0.037 (2)0.027 (2)0.032 (2)
C250.055 (2)0.094 (3)0.055 (2)0.006 (2)0.0153 (19)0.036 (2)
C260.061 (2)0.084 (3)0.0413 (19)0.017 (2)0.0191 (18)0.0156 (18)
C270.053 (2)0.053 (2)0.050 (2)0.0023 (15)0.0265 (17)0.0140 (16)
Geometric parameters (Å, º) top
Cu1—O121.955 (2)C11—O12i1.254 (3)
Cu1—O211.964 (2)C11—C121.495 (4)
Cu1—O111.971 (2)C12—C131.380 (4)
Cu1—O221.974 (2)C12—C171.381 (4)
Cu1—N12.212 (2)C13—C141.367 (4)
Cu1—Cu1i2.6939 (13)C13—H130.9300
N1—C11.314 (4)C14—C151.373 (4)
N1—C91.375 (4)C14—H140.9300
C1—C21.396 (4)C15—C161.359 (4)
C1—H10.9300C15—H150.9300
C2—C31.347 (4)C16—C171.370 (4)
C2—H20.9300C16—H160.9300
C3—C41.404 (4)C17—H170.9300
C3—H30.9300O21—C211.261 (3)
C4—C51.403 (4)O22—C21i1.250 (3)
C4—C91.419 (4)C21—O22i1.250 (3)
C5—C61.355 (4)C21—C221.495 (4)
C5—H50.9300C22—C231.364 (4)
C6—C71.410 (4)C22—C271.380 (4)
C6—C101.505 (4)C23—C241.379 (5)
C7—C81.358 (4)C23—H230.9300
C7—H70.9300C24—C251.372 (5)
C8—C91.410 (4)C24—H240.9300
C8—H80.9300C25—C261.363 (5)
C10—H10A0.9600C25—H250.9300
C10—H10B0.9600C26—C271.377 (5)
C10—H10C0.9600C26—H260.9300
O11—C111.262 (3)C27—H270.9300
O12—C11i1.254 (3)
O12—Cu1—O2189.07 (10)H10A—C10—H10C109.5
O12—Cu1—O11166.38 (8)H10B—C10—H10C109.5
O21—Cu1—O1189.52 (10)C11—O11—Cu1127.61 (19)
O12—Cu1—O2288.79 (10)C11i—O12—Cu1121.26 (19)
O21—Cu1—O22166.32 (8)O12i—C11—O11124.7 (3)
O11—Cu1—O2289.39 (10)O12i—C11—C12118.4 (3)
O12—Cu1—N1101.96 (9)O11—C11—C12116.9 (3)
O21—Cu1—N197.02 (9)C13—C12—C17118.5 (3)
O11—Cu1—N191.66 (9)C13—C12—C11121.1 (3)
O22—Cu1—N196.64 (10)C17—C12—C11120.4 (3)
O12—Cu1—Cu1i86.24 (7)C14—C13—C12120.4 (3)
O21—Cu1—Cu1i82.33 (7)C14—C13—H13119.8
O11—Cu1—Cu1i80.14 (7)C12—C13—H13119.8
O22—Cu1—Cu1i84.05 (7)C13—C14—C15120.6 (3)
N1—Cu1—Cu1i171.77 (6)C13—C14—H14119.7
C1—N1—C9117.2 (2)C15—C14—H14119.7
C1—N1—Cu1114.60 (19)C16—C15—C14119.3 (3)
C9—N1—Cu1128.17 (19)C16—C15—H15120.4
N1—C1—C2124.6 (3)C14—C15—H15120.4
N1—C1—H1117.7C15—C16—C17120.7 (3)
C2—C1—H1117.7C15—C16—H16119.6
C3—C2—C1118.8 (3)C17—C16—H16119.6
C3—C2—H2120.6C16—C17—C12120.5 (3)
C1—C2—H2120.6C16—C17—H17119.8
C2—C3—C4120.0 (3)C12—C17—H17119.8
C2—C3—H3120.0C21—O21—Cu1125.3 (2)
C4—C3—H3120.0C21i—O22—Cu1123.10 (19)
C5—C4—C3123.6 (3)O22i—C21—O21125.0 (3)
C5—C4—C9118.7 (3)O22i—C21—C22118.6 (3)
C3—C4—C9117.7 (3)O21—C21—C22116.4 (3)
C6—C5—C4122.6 (3)C23—C22—C27119.1 (3)
C6—C5—H5118.7C23—C22—C21120.4 (3)
C4—C5—H5118.7C27—C22—C21120.5 (3)
C5—C6—C7118.0 (3)C22—C23—C24120.6 (3)
C5—C6—C10121.9 (3)C22—C23—H23119.7
C7—C6—C10120.1 (3)C24—C23—H23119.7
C8—C7—C6121.9 (3)C25—C24—C23120.1 (4)
C8—C7—H7119.0C25—C24—H24119.9
C6—C7—H7119.0C23—C24—H24119.9
C7—C8—C9120.3 (3)C26—C25—C24119.6 (3)
C7—C8—H8119.8C26—C25—H25120.2
C9—C8—H8119.8C24—C25—H25120.2
N1—C9—C8119.9 (2)C25—C26—C27120.3 (3)
N1—C9—C4121.7 (3)C25—C26—H26119.9
C8—C9—C4118.4 (3)C27—C26—H26119.9
C6—C10—H10A109.5C26—C27—C22120.3 (3)
C6—C10—H10B109.5C26—C27—H27119.8
H10A—C10—H10B109.5C22—C27—H27119.8
C6—C10—H10C109.5
O12—Cu1—N1—C1147.0 (2)Cu1i—Cu1—O12—C11i1.0 (2)
O21—Cu1—N1—C1122.5 (2)Cu1—O11—C11—O12i0.8 (4)
O11—Cu1—N1—C132.8 (2)Cu1—O11—C11—C12178.41 (18)
O22—Cu1—N1—C156.8 (2)O12i—C11—C12—C136.2 (4)
O12—Cu1—N1—C933.2 (2)O11—C11—C12—C13173.0 (3)
O21—Cu1—N1—C957.3 (2)O12i—C11—C12—C17175.0 (3)
O11—Cu1—N1—C9147.0 (2)O11—C11—C12—C175.7 (4)
O22—Cu1—N1—C9123.4 (2)C17—C12—C13—C140.2 (5)
C9—N1—C1—C20.3 (4)C11—C12—C13—C14179.0 (3)
Cu1—N1—C1—C2179.9 (2)C12—C13—C14—C150.7 (5)
N1—C1—C2—C30.2 (5)C13—C14—C15—C160.4 (5)
C1—C2—C3—C40.0 (5)C14—C15—C16—C170.9 (5)
C2—C3—C4—C5177.4 (3)C15—C16—C17—C121.8 (5)
C2—C3—C4—C90.1 (4)C13—C12—C17—C161.5 (5)
C3—C4—C5—C6177.4 (3)C11—C12—C17—C16179.7 (3)
C9—C4—C5—C60.1 (4)O12—Cu1—O21—C2190.1 (2)
C4—C5—C6—C72.0 (5)O11—Cu1—O21—C2176.4 (2)
C4—C5—C6—C10175.4 (3)O22—Cu1—O21—C219.1 (5)
C5—C6—C7—C81.9 (5)N1—Cu1—O21—C21168.0 (2)
C10—C6—C7—C8175.6 (3)Cu1i—Cu1—O21—C213.8 (2)
C6—C7—C8—C90.3 (5)O12—Cu1—O22—C21i85.7 (2)
C1—N1—C9—C8179.9 (3)O21—Cu1—O22—C21i4.6 (5)
Cu1—N1—C9—C80.3 (4)O11—Cu1—O22—C21i80.8 (2)
C1—N1—C9—C40.2 (4)N1—Cu1—O22—C21i172.4 (2)
Cu1—N1—C9—C4179.98 (18)Cu1i—Cu1—O22—C21i0.6 (2)
C7—C8—C9—N1177.4 (3)Cu1—O21—C21—O22i5.7 (4)
C7—C8—C9—C42.3 (4)Cu1—O21—C21—C22173.24 (18)
C5—C4—C9—N1177.5 (2)O22i—C21—C22—C23175.4 (3)
C3—C4—C9—N10.0 (4)O21—C21—C22—C235.6 (4)
C5—C4—C9—C82.2 (4)O22i—C21—C22—C276.9 (4)
C3—C4—C9—C8179.7 (3)O21—C21—C22—C27172.1 (3)
O12—Cu1—O11—C111.8 (5)C27—C22—C23—C240.8 (5)
O21—Cu1—O11—C1182.3 (3)C21—C22—C23—C24177.0 (3)
O22—Cu1—O11—C1184.1 (3)C22—C23—C24—C250.3 (6)
N1—Cu1—O11—C11179.3 (2)C23—C24—C25—C260.3 (6)
Cu1i—Cu1—O11—C110.0 (2)C24—C25—C26—C270.5 (6)
O21—Cu1—O12—C11i81.4 (2)C25—C26—C27—C220.1 (5)
O11—Cu1—O12—C11i2.7 (5)C23—C22—C27—C260.6 (5)
O22—Cu1—O12—C11i85.1 (2)C21—C22—C27—C26177.2 (3)
N1—Cu1—O12—C11i178.4 (2)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O110.932.503.047 (4)118
C2—H2···Cg1ii0.932.823.734 (3)168
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H5O2)4(C10H9N)2]
Mr897.88
Crystal system, space groupTriclinic, P1
Temperature (K)288
a, b, c (Å)10.420 (7), 10.590 (7), 10.751 (6)
α, β, γ (°)70.399 (11), 64.234 (10), 81.107 (10)
V3)1006.5 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.10 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS: Bruker, 1997)
Tmin, Tmax0.898, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
5579, 3848, 3001
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.05
No. of reflections3848
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O110.932.503.047 (4)118
C2—H2···Cg1i0.932.823.734 (3)168
Symmetry code: (i) x, y, z+1.
ππ interactions ( Å, ° ) top
Cg2 is the centroid of ring C22–C27. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.
CgICgJCgI···CgJDihedral angleInterplanar distanceOffset
Cg2Cg2i3.967 (4)03.392.06
Symmetry code: (i) -x+2,-y+2,-z.
 

Acknowledgements

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of Environment, the Cooperative Research Program for Agricultural Science and Technology Development (20070301–036-019–02), and the Seoul R&BD Program is gratefully acknowledged.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521–3529.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCotton, F. A. & Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press.  Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMines, G. A., Tzeng, B.-C., Stevenson, K. J., Li, J. & Hupp, J. T. (2002). Angew. Chem. Int. Ed. 41, 154–157.  Web of Science CrossRef CAS Google Scholar
First citationPichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoo, S.-K., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2003). Dalton Trans. pp. 1454–1456.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m881-m882
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds