metal-organic compounds
Anhydrous polymeric zinc(II) pentanoate
aDepartment of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica
*Correspondence e-mail: henry.ellis@uwimona.edu.jm
The structure of the title compound, poly[di-μ-pentanoato-zinc(II)], [Zn{CH3(CH2)3COO}2]n, consists of a three-dimensional polymeric layered network with sheets parallel to the (100) plane, in which tetrahedrally coordinated zinc(II) ions are connected by pentanoate bridges in a syn–anti arrangement. The hydrocarbon chains are in the fully extended all-trans conformation and are arranged in a tail-to-tail double bilayer.
Related literature
For related literature, see: Clegg et al. (1986); Blair et al. (1993); Dumbleton & Lomer (1965); Glover (1981); Goldschmied et al. (1977); Ishioka et al. (1998); Lacouture et al. (2000); Lewis & Lomer (1969); Lomer & Perera (1974); Peultier et al. (1999); Segedin et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2000); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808008283/cf2188sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008283/cf2188Isup2.hkl
Single crystals of zinc(II) pentanoate were prepared from the reaction of zinc oxide (0.407 g) and n-pentanoic acid (5.0 cm3; >100% excess) in approximately 100 cm3 of ethanol. The white suspension was refluxed until the solution was transparent. The resulting hot, colorless solution was filtered by suction and the filtrate left to cool to room temperature. After about six days, long, thin, colourless, plate-like single crystals, some in clusters, crystallized from solution. The crystals were then removed, air-dried, and kept in sealed vials at ambient temperature.
H atoms were positioned geometrically and refined as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The crystal was weakly diffracting at high angles.
Data collection: CrystalClear (Rigaku, 2000); cell
CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(C5H9O2)2] | Dx = 1.402 Mg m−3 |
Mr = 267.63 | Melting point: 425.5 K |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
a = 9.389 (2) Å | Cell parameters from 7493 reflections |
b = 4.782 (1) Å | θ = 2.2–25.0° |
c = 29.126 (7) Å | µ = 1.93 mm−1 |
β = 104.256 (7)° | T = 293 K |
V = 1267.5 (5) Å3 | Thin block, colourless |
Z = 4 | 0.30 × 0.30 × 0.05 mm |
F(000) = 560 |
Rigaku R-AXIS IIC image-plate diffractometer | 2125 independent reflections |
Radiation source: rotating-anode X-ray tube | 1965 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 105 pixels mm-1 | θmax = 25.0°, θmin = 2.2° |
ϕ scans | h = −11→11 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | k = −5→5 |
Tmin = 0.621, Tmax = 1.000 | l = −34→34 |
7493 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0408P)2 + 3.0707P] where P = (Fo2 + 2Fc2)/3 |
2125 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
[Zn(C5H9O2)2] | V = 1267.5 (5) Å3 |
Mr = 267.63 | Z = 4 |
Monoclinic, P21/a | Mo Kα radiation |
a = 9.389 (2) Å | µ = 1.93 mm−1 |
b = 4.782 (1) Å | T = 293 K |
c = 29.126 (7) Å | 0.30 × 0.30 × 0.05 mm |
β = 104.256 (7)° |
Rigaku R-AXIS IIC image-plate diffractometer | 2125 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | 1965 reflections with I > 2σ(I) |
Tmin = 0.621, Tmax = 1.000 | Rint = 0.062 |
7493 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.32 e Å−3 |
2125 reflections | Δρmin = −0.52 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7184 (5) | −0.3109 (10) | 0.19302 (17) | 0.0350 (10) | |
C2 | 0.7780 (6) | −0.1602 (11) | 0.15666 (19) | 0.0456 (13) | |
H2A | 0.8636 | −0.0544 | 0.1731 | 0.055* | |
H2B | 0.7047 | −0.0267 | 0.1407 | 0.055* | |
C3 | 0.8215 (6) | −0.3404 (11) | 0.11919 (19) | 0.0462 (13) | |
H3A | 0.8985 | −0.4689 | 0.1346 | 0.055* | |
H3B | 0.7374 | −0.4503 | 0.1029 | 0.055* | |
C4 | 0.8750 (7) | −0.1677 (13) | 0.0835 (2) | 0.0571 (15) | |
H4A | 0.9595 | −0.0591 | 0.1000 | 0.069* | |
H4B | 0.7983 | −0.0376 | 0.0686 | 0.069* | |
C5 | 0.9177 (9) | −0.3437 (17) | 0.0453 (2) | 0.081 (2) | |
H5A | 0.9946 | −0.4712 | 0.0599 | 0.122* | |
H5B | 0.9517 | −0.2233 | 0.0239 | 0.122* | |
H5C | 0.8338 | −0.4473 | 0.0282 | 0.122* | |
C6 | 0.4620 (5) | 0.1354 (11) | 0.29619 (18) | 0.0405 (12) | |
C7 | 0.5718 (6) | −0.0210 (14) | 0.3329 (2) | 0.0569 (16) | |
H7A | 0.6541 | 0.1024 | 0.3456 | 0.068* | |
H7B | 0.6085 | −0.1756 | 0.3176 | 0.068* | |
C8 | 0.5177 (7) | −0.1364 (17) | 0.3739 (2) | 0.0666 (18) | |
H8A | 0.4695 | 0.0125 | 0.3870 | 0.080* | |
H8B | 0.4450 | −0.2800 | 0.3621 | 0.080* | |
C9 | 0.6363 (9) | −0.258 (2) | 0.4128 (3) | 0.097 (3) | |
H9A | 0.7112 | −0.1168 | 0.4237 | 0.116* | |
H9B | 0.6817 | −0.4123 | 0.4001 | 0.116* | |
C10 | 0.5825 (11) | −0.362 (3) | 0.4546 (3) | 0.139 (4) | |
H10A | 0.5363 | −0.2109 | 0.4672 | 0.208* | |
H10B | 0.6642 | −0.4303 | 0.4787 | 0.208* | |
H10C | 0.5128 | −0.5099 | 0.4446 | 0.208* | |
O1 | 0.6932 (4) | −0.1838 (7) | 0.22800 (13) | 0.0486 (9) | |
O2 | 0.6954 (4) | −0.5724 (7) | 0.18803 (12) | 0.0438 (9) | |
O3 | 0.4976 (4) | 0.2344 (7) | 0.26038 (12) | 0.0431 (8) | |
O4 | 0.3333 (4) | 0.1625 (8) | 0.30100 (13) | 0.0480 (9) | |
Zn1 | 0.68833 (6) | 0.21140 (11) | 0.24407 (2) | 0.0358 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.040 (3) | 0.031 (3) | 0.038 (3) | 0.000 (2) | 0.017 (2) | 0.001 (2) |
C2 | 0.065 (4) | 0.032 (3) | 0.049 (3) | −0.004 (2) | 0.032 (3) | 0.000 (2) |
C3 | 0.061 (4) | 0.035 (3) | 0.049 (3) | 0.001 (2) | 0.027 (3) | −0.006 (2) |
C4 | 0.071 (4) | 0.058 (4) | 0.050 (3) | 0.000 (3) | 0.031 (3) | 0.001 (3) |
C5 | 0.110 (6) | 0.092 (6) | 0.059 (4) | −0.004 (5) | 0.052 (4) | −0.008 (4) |
C6 | 0.038 (3) | 0.037 (3) | 0.051 (3) | −0.001 (2) | 0.020 (2) | −0.004 (2) |
C7 | 0.045 (3) | 0.077 (4) | 0.051 (3) | 0.011 (3) | 0.017 (3) | 0.018 (3) |
C8 | 0.051 (4) | 0.093 (5) | 0.057 (4) | −0.003 (3) | 0.017 (3) | 0.022 (4) |
C9 | 0.076 (5) | 0.144 (9) | 0.070 (5) | 0.010 (5) | 0.015 (4) | 0.047 (5) |
C10 | 0.121 (9) | 0.214 (13) | 0.081 (6) | 0.009 (8) | 0.025 (6) | 0.073 (7) |
O1 | 0.073 (3) | 0.0289 (18) | 0.055 (2) | −0.0028 (17) | 0.037 (2) | −0.0019 (16) |
O2 | 0.058 (2) | 0.0271 (18) | 0.051 (2) | −0.0039 (15) | 0.0227 (18) | 0.0000 (16) |
O3 | 0.040 (2) | 0.047 (2) | 0.0457 (19) | 0.0031 (15) | 0.0176 (16) | 0.0053 (16) |
O4 | 0.036 (2) | 0.064 (3) | 0.050 (2) | 0.0026 (17) | 0.0219 (17) | 0.0016 (18) |
Zn1 | 0.0426 (4) | 0.0295 (3) | 0.0410 (3) | −0.0012 (2) | 0.0210 (2) | −0.0022 (3) |
C1—O1 | 1.258 (6) | C7—C8 | 1.512 (8) |
C1—O2 | 1.271 (6) | C7—H7A | 0.970 |
C1—C2 | 1.498 (6) | C7—H7B | 0.970 |
C2—C3 | 1.523 (7) | C8—C9 | 1.496 (9) |
C2—H2A | 0.970 | C8—H8A | 0.970 |
C2—H2B | 0.970 | C8—H8B | 0.970 |
C3—C4 | 1.506 (7) | C9—C10 | 1.515 (10) |
C3—H3A | 0.970 | C9—H9A | 0.970 |
C3—H3B | 0.970 | C9—H9B | 0.970 |
C4—C5 | 1.525 (8) | C10—H10A | 0.960 |
C4—H4A | 0.970 | C10—H10B | 0.960 |
C4—H4B | 0.970 | C10—H10C | 0.960 |
C5—H5A | 0.960 | Zn1—O1 | 1.950 (3) |
C5—H5B | 0.960 | O2—Zn1i | 1.947 (3) |
C5—H5C | 0.960 | Zn1—O3 | 1.966 (3) |
C6—O4 | 1.256 (6) | O4—Zn1ii | 1.963 (4) |
C6—O3 | 1.263 (6) | Zn1—O2iii | 1.947 (3) |
C6—C7 | 1.491 (7) | Zn1—O4iv | 1.963 (4) |
O1—C1—O2 | 120.5 (4) | C8—C7—H7A | 108.2 |
O1—C1—C2 | 121.2 (4) | C6—C7—H7B | 108.2 |
O2—C1—C2 | 118.4 (4) | C8—C7—H7B | 108.2 |
C1—C2—C3 | 116.5 (4) | H7A—C7—H7B | 107.4 |
C1—C2—H2A | 108.2 | C9—C8—C7 | 114.0 (6) |
C3—C2—H2A | 108.2 | C9—C8—H8A | 108.8 |
C1—C2—H2B | 108.2 | C7—C8—H8A | 108.8 |
C3—C2—H2B | 108.2 | C9—C8—H8B | 108.8 |
H2A—C2—H2B | 107.3 | C7—C8—H8B | 108.8 |
C4—C3—C2 | 112.2 (4) | H8A—C8—H8B | 107.7 |
C4—C3—H3A | 109.2 | C8—C9—C10 | 113.7 (7) |
C2—C3—H3A | 109.2 | C8—C9—H9A | 108.8 |
C4—C3—H3B | 109.2 | C10—C9—H9A | 108.8 |
C2—C3—H3B | 109.2 | C8—C9—H9B | 108.8 |
H3A—C3—H3B | 107.9 | C10—C9—H9B | 108.8 |
C3—C4—C5 | 113.1 (5) | H9A—C9—H9B | 107.7 |
C3—C4—H4A | 109.0 | C9—C10—H10A | 109.5 |
C5—C4—H4A | 109.0 | C9—C10—H10B | 109.5 |
C3—C4—H4B | 109.0 | H10A—C10—H10B | 109.5 |
C5—C4—H4B | 109.0 | C9—C10—H10C | 109.5 |
H4A—C4—H4B | 107.8 | H10A—C10—H10C | 109.5 |
C4—C5—H5A | 109.5 | H10B—C10—H10C | 109.5 |
C4—C5—H5B | 109.5 | C1—O1—Zn1 | 133.1 (3) |
H5A—C5—H5B | 109.5 | C1—O2—Zn1i | 117.8 (3) |
C4—C5—H5C | 109.5 | C6—O3—Zn1 | 128.3 (3) |
H5A—C5—H5C | 109.5 | C6—O4—Zn1ii | 115.0 (3) |
H5B—C5—H5C | 109.5 | O2iii—Zn1—O1 | 107.80 (15) |
O4—C6—O3 | 120.7 (5) | O2iii—Zn1—O4iv | 112.66 (15) |
O4—C6—C7 | 119.0 (5) | O1—Zn1—O4iv | 116.62 (17) |
O3—C6—C7 | 120.3 (4) | O2iii—Zn1—O3 | 113.19 (15) |
C6—C7—C8 | 116.2 (5) | O1—Zn1—O3 | 100.89 (15) |
C6—C7—H7A | 108.2 | O4iv—Zn1—O3 | 105.21 (14) |
Symmetry codes: (i) x, y−1, z; (ii) x−1/2, −y+1/2, z; (iii) x, y+1, z; (iv) x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C5H9O2)2] |
Mr | 267.63 |
Crystal system, space group | Monoclinic, P21/a |
Temperature (K) | 293 |
a, b, c (Å) | 9.389 (2), 4.782 (1), 29.126 (7) |
β (°) | 104.256 (7) |
V (Å3) | 1267.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.93 |
Crystal size (mm) | 0.30 × 0.30 × 0.05 |
Data collection | |
Diffractometer | Rigaku R-AXIS IIC image-plate diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2000) |
Tmin, Tmax | 0.621, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7493, 2125, 1965 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.126, 1.17 |
No. of reflections | 2125 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.52 |
Computer programs: CrystalClear (Rigaku, 2000), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and DIAMOND (Bergerhoff et al., 1996).
Zn1—O1 | 1.950 (3) | Zn1—O2i | 1.947 (3) |
Zn1—O3 | 1.966 (3) | Zn1—O4ii | 1.963 (4) |
O2i—Zn1—O1 | 107.80 (15) | O2i—Zn1—O3 | 113.19 (15) |
O2i—Zn1—O4ii | 112.66 (15) | O1—Zn1—O3 | 100.89 (15) |
O1—Zn1—O4ii | 116.62 (17) | O4ii—Zn1—O3 | 105.21 (14) |
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+1/2, z. |
Acknowledgements
The authors express thanks to Ms Susanne Olsson of the X-ray Crystallography Laboratory in the Department of Chemistry of the University of Gothenberg, Sweden, for her assistance with aspects of the single-crystal work.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Blair, J., Howie, R. A. & Wardell, J. L. (1993). Acta Cryst. C49, 219–221. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Clegg, W., Little, I. R. & Straughan, B. P. (1986). Acta Cryst. C42, 1701–1703. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dumbleton, J. H. & Lomer, T. R. (1965). Acta Cryst. 19, 301–307. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Glover, D. M. (1981). Acta Cryst. A37, 251–263. CrossRef CAS IUCr Journals Web of Science Google Scholar
Goldschmied, E., Rae, A. D. & Stephenson, N. C. (1977). Acta Cryst. B33, 2117–2120. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ishioka, T., Shibata, Y., Takahasi, M. & Kenesaka, T. (1998). Spectrochim. Acta A, 54, 1811–1818. CrossRef Google Scholar
Lacouture, F., Peultier, J., François, M. & Steinmetz, J. (2000). Acta Cryst. C56, 556–557. CrossRef CAS IUCr Journals Google Scholar
Lewis, E. L. V. & Lomer, T. R. (1969). Acta Cryst. B25, 702–710. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Lomer, T. R. & Perera, K. (1974). Acta Cryst. B30, 2912–2913. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peultier, J., Francois, M. & Steinmetz, J. (1999). Acta Cryst. C55, 2064–2065. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2000). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA. Google Scholar
Segedin, N., Lah, Z. M., Leban, I. & Golic, L. (1999). Acta Chim. Slov. 46, 173–184. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Long-chain metal carboxylates do not easily form crystals suitable for single-crystal X-ray analysis; usually, the crystals are thin needles that are fragile and, in many cases exhibit micro-twinning. Consequently, the few structures that have been reported are those of the short-chain homologues (Dumbleton & Lomer, 1965; Lewis & Lomer, 1969; Glover, 1981; Lomer & Perera, 1974; Ishioka et al., 1998). For the zinc(II) series those reported include anhydrous zinc(II) acetate (Clegg et al., 1986), propionate (Goldschmied et al., 1977), butanoate (Blair et al., 1993), hexanoate and heptanoate (Segedin et al., 1999; Peultier et al., 1999) and octanoate (Lacouture et al., 2000). The compounds are isostructural in the sense that the zinc ions have a tetrahedral geometry of oxygen atoms and are bridged by bidentate ligands. In this study, anhydrous zinc(II) pentanoate, (I), was investigated in order to elucidate its crystal structure.
The structure (Fig. 1) is four-coordinate, where each zinc ion is tetrahedrally coordinated by oxygen atoms from four different pentanoate ligands. The four pentanoate ligands around zinc are of the Z,E-type bridging bidentate mode; that is, they are bonded in a syn-anti arrangement to two tetrahedral zinc ions. Geometric data indicate that the Zn—O bond lengths are not equivalent and clearly point to unsymmetrical bonding around the zinc ion.
The alkyl chains of the pentanoate groups are in the fully extended all-trans conformation. There is excellent agreement of the C—C bond lengths and C—C—C angles with published values for hydrocarbon chains in a fully extended all-trans conformation (Lomer & Perera, 1974). There are four formula units in the unit cell and two distinct basal planes, resulting in a double bilayer lamella arrangement forming a polymeric network (Fig. 2) with an alternating packing of the hydrocarbon chains in neighbouring bilayers. When viewed down the b axis, the hydrocarbon chains, which are tilted with respect to the zinc basal planes, are in each bilayer aligned in different planes. The structure appears very different when viewed down the a axis (Fig. 3), where in one bilayer the chains appear to zigzag and cross at the bonds along the C—C axis. In the other bilayer the chains are tilted towards each other and appear to cross each other at carbon atom number 4.
The molecular packing (Fig. 4) highlights the distorted tetrahedra around the zinc ions. In one basal plane, the vertices of the tetrahedra alternate parallel and perpendicular to the vertical plane throughout and in the other basal plane the vertices alternate at the top and bottom throughout. This arrangement allows for alternating basal planes in the overall structure to be identical.
There is interaction between parallel sheets through bidentate bridging, resulting in a three-dimensional sheet-like/layered polymeric network where the chains are arranged tail-to-tail, arising from van der Waals interactions in sheets parallel to the ac plane.