metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­{4-[N′-(2,4-dioxo-3-pentyl­­idene)­hydrazino]­benzoato}­copper(II)]-μ-acetato]

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan, 250353, People's Republic of China, bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan, 250100, People's Republic of China, and cDepartment of Clinical Medicine, Medical School, Shandong University, Jinan, 250012, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 22 April 2008; accepted 28 May 2008; online 19 June 2008)

In the title compound, [Cu(CH3CO2)(C12H11N2O4)(H2O)]n, the CuII cation is tetra­coordinated by three carboxyl­ate O atoms from one 4-[N′-(2,4-dioxo-3-pentyl­idene)­hydrazino]­benzoate ligand and two acetate bridges, and by one water mol­ecule. The acetate bridges link adjacent CuII cations, forming a chain. The crystal structure involves O—H⋯O hydrogen bonds.

Related literature

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]). For uses in biological systems, see: Chung et al. (1971[Chung, L., Rajan, K. S., Merdinger, E. & Grecz, N. (1971). Biophys. J. 11, 469-482.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Serre et al. (2005[Serre, C., Marrot, J. & Férey, G. (2005). Inorg. Chem. 44, 654-658.]); Pocker & Fong (1980[Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045-2049.]); Scapin et al. (1997[Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081-15088.]); Kim et al. (2001[Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684-2690.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)(C12H11N2O4)(H2O)]

  • Mr = 387.83

  • Monoclinic, P 21 /c

  • a = 8.106 (2) Å

  • b = 23.918 (4) Å

  • c = 8.946 (2) Å

  • β = 106.90 (3)°

  • V = 1659.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 0.755

  • 8654 measured reflections

  • 4235 independent reflections

  • 2693 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.219

  • S = 1.00

  • 4235 reflections

  • 226 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.94 (5) 1.90 (5) 2.617 (5) 132 (4)
O7—H7A⋯O1ii 0.84 (4) 1.91 (4) 2.739 (4) 168 (5)
O7—H7B⋯O4iii 0.84 (5) 2.00 (3) 2.774 (5) 153 (6)
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, carboxylates have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). For example, Kim et al. (2001) focused on the syntheses of transition metal complexes containing benzenecarboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using sodium 4-(2-(diacetylmethylene)hydrazino)benzoate as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound. The asymmetric unit of the title compound is shown in Fig. 1. The copper(II) cation is tetracoordinated by three carboxylate oxygen atoms from one 2,4-dioxo-3-pentylidene)hydrazino]benzoate ligand and two acetate bridges, and by one water molecule. The acetate bridges link adjacent copper(II) cations, forming a chain, shown in Fig. 2. The Cu—O bond distances are in the range 1.970 (4)–2.031 (4) Å. The packing involves O—H···O hydrogen bonds, with O···O in the range 2.744 (5)–3.058 (6) Å, as shown in Fig. 3.

Related literature top

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959). For uses in biological systems, see: Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997); Kim et al. (2001).

Experimental top

A mixture of copper(II) acetate (0.5 mmol), 4-(2-(diacetylmethylene)hydrazino)benzoic acid (0.5 mmol), water (8 ml) and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 413 K for three days. Colorless crystals were obtained after cooling to room temperature with a yield of 27%. Anal. Calc. for C14H15CuN2O7: C 43.43, H 3.88, N 7.24%; Found: C 43.36, H 3.79, N 7.16%.

Refinement top

The H atoms of the water molecule were located in a difference density map and were refined with distance restraints H···H = 1.38 (1) Å, O—H = 0.84 (1) Å, and with Uiso(H) = 1.2Ueq(O). The N-bound H atom was also located in a map, and was refined with no positional restraints and with Uiso(H) = 1.2Ueq(N). All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A segment of the polymeric structure of (I), showing the atomic numbering scheme and 30% probability displacement ellipsoids. [Symmetry code: (I), x, 3/2 - y, z - 1/2.]
[Figure 2] Fig. 2. One-dimensional chain of (I).
[Figure 3] Fig. 3. The packing of (I), with hydrogen bonds shown as dashed lines.
catena-Poly[[aqua{4-[N'-(2,4-dioxo-3- pentylidene)hydrazino]benzoato}copper(II)]-µ-acetato] top
Crystal data top
[Cu(C2H3O2)(C12H11N2O4)(H2O)]F(000) = 796
Mr = 387.83Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4235 reflections
a = 8.106 (2) Åθ = 1.7–28.8°
b = 23.918 (4) ŵ = 1.35 mm1
c = 8.946 (2) ÅT = 293 K
β = 106.90 (3)°Block, blue
V = 1659.5 (6) Å30.43 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4235 independent reflections
Radiation source: fine-focus sealed tube2693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 109
Tmin = 0.594, Tmax = 0.755k = 3129
8654 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.167P)2]
where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.94 e Å3
3 restraintsΔρmin = 1.73 e Å3
Crystal data top
[Cu(C2H3O2)(C12H11N2O4)(H2O)]V = 1659.5 (6) Å3
Mr = 387.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.106 (2) ŵ = 1.35 mm1
b = 23.918 (4) ÅT = 293 K
c = 8.946 (2) Å0.43 × 0.28 × 0.22 mm
β = 106.90 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4235 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2693 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.755Rint = 0.034
8654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0643 restraints
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.94 e Å3
4235 reflectionsΔρmin = 1.73 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.04150 (6)0.25987 (2)0.28607 (6)0.0311 (2)
C10.2534 (6)0.28239 (16)0.0029 (5)0.0339 (8)
C20.4039 (6)0.2997 (2)0.1400 (5)0.0490 (11)
H2A0.37760.29180.23580.073*
H2B0.42450.33900.13370.073*
H2C0.50490.27930.13750.073*
C30.1783 (5)0.33727 (16)0.4174 (5)0.0340 (8)
C40.3381 (5)0.37225 (15)0.4810 (4)0.0290 (8)
C50.4965 (5)0.36320 (16)0.4439 (5)0.0326 (8)
H5A0.50360.33400.37730.039*
C60.6407 (5)0.39724 (16)0.5056 (5)0.0331 (8)
H6A0.74230.39120.47960.040*
C70.6292 (5)0.43991 (15)0.6058 (4)0.0299 (8)
C80.4760 (5)0.44926 (16)0.6466 (5)0.0333 (8)
H8A0.47120.47780.71580.040*
C90.3298 (5)0.41525 (16)0.5824 (5)0.0332 (8)
H9A0.22830.42170.60820.040*
C100.9194 (5)0.54195 (16)0.8363 (4)0.0281 (7)
C111.0841 (5)0.53851 (17)0.7897 (5)0.0346 (8)
C120.8959 (5)0.58020 (16)0.9595 (5)0.0339 (8)
C130.7155 (6)0.5879 (3)0.9759 (7)0.0562 (14)
H13A0.72010.61331.06000.084*
H13B0.67200.55240.99780.084*
H13C0.64090.60270.88040.084*
C141.2423 (6)0.5712 (2)0.8705 (6)0.0480 (11)
H14A1.33190.56310.82330.072*
H14B1.28010.56100.97900.072*
H14C1.21640.61040.86120.072*
N10.7769 (4)0.47437 (13)0.6639 (4)0.0306 (7)
H10.872 (6)0.471 (2)0.625 (5)0.037*
N20.7779 (4)0.51093 (13)0.7725 (4)0.0307 (7)
O11.0199 (4)0.60409 (14)1.0486 (4)0.0493 (8)
O21.0905 (4)0.50681 (17)0.6823 (5)0.0599 (11)
O30.1881 (4)0.29684 (14)0.3292 (4)0.0511 (8)
O40.0403 (4)0.34837 (14)0.4497 (4)0.0456 (8)
O50.2621 (4)0.28883 (13)0.1365 (3)0.0411 (7)
O60.1154 (5)0.26235 (12)0.0240 (4)0.0424 (8)
O70.0168 (6)0.18300 (14)0.2414 (4)0.0566 (10)
H7A0.019 (8)0.1569 (15)0.305 (5)0.068*
H7B0.056 (7)0.172 (2)0.169 (4)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0339 (4)0.0265 (3)0.0328 (4)0.00674 (17)0.0093 (2)0.00117 (17)
C10.046 (2)0.0210 (17)0.033 (2)0.0006 (15)0.0104 (18)0.0006 (15)
C20.051 (3)0.052 (3)0.038 (2)0.014 (2)0.005 (2)0.001 (2)
C30.040 (2)0.0279 (19)0.031 (2)0.0096 (15)0.0056 (17)0.0025 (15)
C40.0317 (18)0.0214 (16)0.0314 (19)0.0037 (13)0.0054 (15)0.0024 (14)
C50.038 (2)0.0241 (17)0.034 (2)0.0007 (15)0.0091 (16)0.0046 (15)
C60.034 (2)0.0295 (19)0.037 (2)0.0014 (15)0.0118 (17)0.0041 (16)
C70.034 (2)0.0225 (17)0.031 (2)0.0020 (14)0.0057 (16)0.0002 (14)
C80.034 (2)0.0267 (18)0.038 (2)0.0027 (14)0.0083 (17)0.0081 (15)
C90.033 (2)0.0284 (19)0.040 (2)0.0043 (15)0.0126 (17)0.0059 (16)
C100.0255 (17)0.0255 (17)0.0309 (19)0.0021 (13)0.0044 (15)0.0037 (14)
C110.0299 (19)0.0279 (18)0.044 (2)0.0012 (15)0.0082 (17)0.0040 (17)
C120.034 (2)0.0268 (18)0.040 (2)0.0015 (15)0.0088 (17)0.0029 (16)
C130.040 (3)0.073 (4)0.057 (3)0.001 (2)0.016 (2)0.027 (3)
C140.037 (2)0.046 (3)0.062 (3)0.0148 (19)0.017 (2)0.017 (2)
N10.0272 (15)0.0255 (15)0.0365 (18)0.0016 (12)0.0054 (14)0.0046 (13)
N20.0315 (16)0.0253 (15)0.0326 (17)0.0011 (12)0.0052 (14)0.0024 (13)
O10.0426 (17)0.0464 (18)0.057 (2)0.0065 (14)0.0121 (15)0.0261 (16)
O20.0423 (18)0.064 (2)0.079 (3)0.0128 (17)0.0269 (19)0.042 (2)
O30.0478 (19)0.0438 (18)0.061 (2)0.0139 (15)0.0139 (16)0.0174 (16)
O40.0409 (18)0.0461 (17)0.0514 (19)0.0123 (13)0.0162 (15)0.0021 (15)
O50.0487 (18)0.0426 (17)0.0334 (16)0.0028 (14)0.0141 (14)0.0007 (13)
O60.0505 (19)0.0400 (17)0.0382 (18)0.0109 (13)0.0152 (15)0.0012 (13)
O70.105 (3)0.0278 (17)0.047 (2)0.0048 (17)0.037 (2)0.0062 (14)
Geometric parameters (Å, º) top
Cu1—O71.968 (4)C8—C91.415 (5)
Cu1—O31.994 (3)C8—H8A0.9300
Cu1—O52.020 (3)C9—H9A0.9300
Cu1—O6i2.030 (3)C10—N21.346 (5)
C1—O61.281 (5)C10—C121.486 (5)
C1—O51.278 (5)C10—C111.513 (5)
C1—C21.515 (6)C11—O21.236 (5)
C2—H2A0.9600C11—C141.496 (6)
C2—H2B0.9600C12—O11.228 (5)
C2—H2C0.9600C12—C131.522 (6)
C3—O41.262 (5)C13—H13A0.9600
C3—O31.265 (5)C13—H13B0.9600
C3—C41.508 (5)C13—H13C0.9600
C4—C91.386 (5)C14—H14A0.9600
C4—C51.433 (5)C14—H14B0.9600
C5—C61.400 (5)C14—H14C0.9600
C5—H5A0.9300N1—N21.305 (4)
C6—C71.379 (5)N1—H10.94 (5)
C6—H6A0.9300O6—Cu1ii2.030 (3)
C7—C81.410 (5)O7—H7A0.84 (4)
C7—N11.422 (5)O7—H7B0.84 (5)
O7—Cu1—O3100.84 (16)C4—C9—H9A120.1
O7—Cu1—O5113.86 (16)C8—C9—H9A120.1
O3—Cu1—O5124.96 (15)N2—C10—C12112.1 (3)
O7—Cu1—O6i94.12 (13)N2—C10—C11124.4 (3)
O3—Cu1—O6i116.10 (15)C12—C10—C11123.5 (3)
O5—Cu1—O6i102.99 (13)O2—C11—C14118.2 (4)
O6—C1—O5119.2 (4)O2—C11—C10119.1 (4)
O6—C1—C2121.0 (4)C14—C11—C10122.7 (4)
O5—C1—C2119.8 (4)O1—C12—C10120.7 (4)
C1—C2—H2A109.5O1—C12—C13120.6 (4)
C1—C2—H2B109.5C10—C12—C13118.7 (4)
H2A—C2—H2B109.5C12—C13—H13A109.4
C1—C2—H2C109.5C12—C13—H13B109.5
H2A—C2—H2C109.5H13A—C13—H13B109.5
H2B—C2—H2C109.5C12—C13—H13C109.5
O4—C3—O3121.6 (4)H13A—C13—H13C109.5
O4—C3—C4121.2 (4)H13B—C13—H13C109.5
O3—C3—C4117.2 (4)C11—C14—H14A109.4
C9—C4—C5118.7 (3)C11—C14—H14B109.5
C9—C4—C3117.3 (3)H14A—C14—H14B109.5
C5—C4—C3123.9 (3)C11—C14—H14C109.5
C6—C5—C4121.5 (3)H14A—C14—H14C109.5
C6—C5—H5A119.2H14B—C14—H14C109.5
C4—C5—H5A119.2N2—N1—C7118.9 (3)
C7—C6—C5118.7 (3)N2—N1—H1120 (3)
C7—C6—H6A120.7C7—N1—H1121 (3)
C5—C6—H6A120.6N1—N2—C10120.3 (3)
C6—C7—C8121.1 (4)C3—O3—Cu1103.6 (3)
C6—C7—N1117.2 (3)C1—O5—Cu1108.4 (3)
C8—C7—N1121.6 (3)C1—O6—Cu1ii134.8 (3)
C7—C8—C9120.0 (4)Cu1—O7—H7A121 (3)
C7—C8—H8A120.0Cu1—O7—H7B127 (3)
C9—C8—H8A120.0H7A—O7—H7B110.9 (18)
C4—C9—C8119.9 (3)
O4—C3—C4—C93.1 (6)N2—C10—C12—C1311.4 (6)
O3—C3—C4—C9177.6 (4)C11—C10—C12—C13168.9 (4)
O4—C3—C4—C5177.5 (4)C6—C7—N1—N2172.2 (4)
O3—C3—C4—C51.8 (6)C8—C7—N1—N28.7 (5)
C9—C4—C5—C61.1 (6)C7—N1—N2—C10176.2 (3)
C3—C4—C5—C6179.6 (4)C12—C10—N2—N1178.9 (3)
C4—C5—C6—C70.8 (6)C11—C10—N2—N10.8 (6)
C5—C6—C7—C80.3 (6)O4—C3—O3—Cu14.6 (5)
C5—C6—C7—N1178.8 (4)C4—C3—O3—Cu1176.2 (3)
C6—C7—C8—C91.2 (6)O7—Cu1—O3—C3154.1 (3)
N1—C7—C8—C9177.9 (4)O5—Cu1—O3—C376.3 (3)
C5—C4—C9—C80.2 (6)O6i—Cu1—O3—C354.0 (3)
C3—C4—C9—C8179.6 (4)O6—C1—O5—Cu12.5 (4)
C7—C8—C9—C40.9 (6)C2—C1—O5—Cu1178.9 (3)
N2—C10—C11—O22.7 (6)O7—Cu1—O5—C153.0 (3)
C12—C10—C11—O2177.6 (4)O3—Cu1—O5—C171.1 (3)
N2—C10—C11—C14176.0 (4)O6i—Cu1—O5—C1153.5 (3)
C12—C10—C11—C143.7 (6)O5—C1—O6—Cu1ii175.8 (3)
N2—C10—C12—O1166.9 (4)C2—C1—O6—Cu1ii5.7 (6)
C11—C10—C12—O112.8 (6)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.94 (5)1.90 (5)2.617 (5)132 (4)
O7—H7A···O1iii0.84 (4)1.91 (4)2.739 (4)168 (5)
O7—H7B···O4ii0.84 (5)2.00 (3)2.774 (5)153 (6)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)(C12H11N2O4)(H2O)]
Mr387.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.106 (2), 23.918 (4), 8.946 (2)
β (°) 106.90 (3)
V3)1659.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.594, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
8654, 4235, 2693
Rint0.034
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.219, 1.00
No. of reflections4235
No. of parameters226
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 1.73

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O71.968 (4)Cu1—O52.020 (3)
Cu1—O31.994 (3)Cu1—O6i2.030 (3)
O7—Cu1—O3100.84 (16)O7—Cu1—O6i94.12 (13)
O7—Cu1—O5113.86 (16)O3—Cu1—O6i116.10 (15)
O3—Cu1—O5124.96 (15)O5—Cu1—O6i102.99 (13)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.94 (5)1.90 (5)2.617 (5)132 (4)
O7—H7A···O1ii0.84 (4)1.91 (4)2.739 (4)168 (5)
O7—H7B···O4iii0.84 (5)2.00 (3)2.774 (5)153 (6)
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, L., Rajan, K. S., Merdinger, E. & Grecz, N. (1971). Biophys. J. 11, 469–482.  CrossRef CAS PubMed Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045–2049.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerre, C., Marrot, J. & Férey, G. (2005). Inorg. Chem. 44, 654–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds