organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1215-o1216

Cytenamide tri­fluoro­acetic acid solvate

aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, bUniversity of Göttingen, GZG, Department of Crystallography, Goldschmidtstrasse 1, D-37077 Göttingen, Germany, cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and dUniversity College London, Department of Chemistry, 20 Gordon Street, London, WC1H 0AJ, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 19 May 2008; accepted 30 May 2008; online 7 June 2008)

Cytenamide forms a 1:1 solvate with trifluoro­acetic acid (systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide trifluoro­acetic acid solvate), C16H13NO·C2HF3O2. The compound crystallizes with one mol­ecule of cytenamide and one of trifluoro­acetic acid in the asymmetric unit; these are linked by O—H⋯O and N—H⋯O hydrogen bonds to form an R22(8) motif. The trifluoro­methyl group of the solvent mol­ecule displays rotational disorder over two sites, with site-occupancy factors of 0.964 (4) and 0.036 (4).

Related literature

For details on the experimental methods used to obtain this form, see: Davis et al. (1964[Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88-94.]); Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]); Florence, Johnston, Fernandes et al. (2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]). For literature on carbamazepine and other related structures, see: Cyr et al. (1987[Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 30, 421-426.]); Fleischman et al. (2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]); Florence, Johnston, Price et al. (2006[Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918-1930.]); Florence, Leech et al. (2006[Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746-747.]); Bandoli et al. (1992[Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.]); Leech et al. (2007[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675-o677.]); Florence, Bedford et al. (2008[Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm, DOI: 10.1039/b719717a.]); Florence, Shankland et al. (2008[Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26-28.]); Fernandes et al. (2007[Fernandes, P., Bardin, J., Johnston, A., Florence, A. J., Leech, C. K., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4269.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO·C2HF3O2

  • Mr = 349.31

  • Monoclinic, P 21 /n

  • a = 12.1673 (11) Å

  • b = 6.3235 (6) Å

  • c = 21.4525 (15) Å

  • β = 101.932 (8)°

  • V = 1614.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 160 K

  • 0.16 × 0.13 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (ABSPACK/CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.83, Tmax = 0.99

  • 10796 measured reflections

  • 2995 independent reflections

  • 1423 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.178

  • S = 1.04

  • 2984 reflections

  • 236 parameters

  • 24 restraints

  • H-atom parameters not refined

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H5⋯O2i 0.89 1.58 2.462 (4) 173
N1—H11⋯O1ii 0.86 2.23 2.976 (4) 144
N1—H12⋯O1iii 0.87 2.16 2.982 (5) 159
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). Cytenamide-trifluoroacetic acid solvate (CYT-TFAA) was produced during an automated parallel crystallization study (Florence, Johnston, Fernandes et al., 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2006) and its closely related analogues: CYT (Florence, Bedford et al., 2008), 10,11-dihydrocarbamazepine (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2007) and cyheptamide (Florence, Shankland et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated TFAA solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The compound crystallizes in space group P21/n with one molecule of CBZ and one molecule of TFAA in the asymmetric unit. As in the structure of CBZ-TFAA solvate (Fernandes et al., 2007) the solvent molecule displays rotational disorder and the fluorine atoms were refined over two sites yielding site occupancy factors 0.964 (4), 0.036 (4) and 0.53 (1), 0.47 (1) for CYT-TFAA and CBZ-TFAA respectively. The molecules also adopt a hydrogen-bonded arrangement similar to that observed in CBZ-TFAA solvate whereby the amide group of each CYT molecule is connected to the carboxylic acid group of a TFAA molecule by N–H···O and O–H···O contacts (Table 1) to form an R22(8) hydrogen-bonded motif (Etter, 1990; Bernstein et al., 1995). CYT also forms a second N—H···O contact with an adjacent solvent molecule to form a chain extending along the [010] direction.

Related literature top

For details on the experimental methods used to obtain this form, see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006). For literature on carbamazepine and other related structures, see: Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006); Florence, Leech et al. (2006); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2007); Florence, Bedford et al. (2008); Florence, Shankland et al. (2008); Fernandes et al. (2007). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995).

Experimental top

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of cytenamide-TFAA was grown from a saturated TFAA solution by isothermal solvent evaporation at 278 K.

Refinement top

Owing to the weak scattering, data were integrated applying a theta cut off of 25°. All non-hydrogen atoms were modelled with anisotropic displacement parameters with the exception of the minor component of the disordered site in the TFAA molecule, for which one common isotropic displacement parameter was calculated and fixed during refinement. Bond-length restraints were applied to C—F bond lengths involving atoms F1, F4, F5 and F6. 3-Fold symmetry was imposed on the disordered minor site of the the TFAA molecule by the use of restraints. H-atoms were found in a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were fixed. Eleven reflections were suppressed as outliers in an analysis of the data.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of CYT-TFAA, showing 50% probablility displacement ellipsoids. The lower occupancy fluorine atoms have beem omitted for clarity.
[Figure 2] Fig. 2. Hydrogen-bonded contacts in CYT-TFAA, showing the adjacent R22(8) CYT-TFAA units further linked by an N—H···O interaction. Minor ocupancy components have been omitted for clarity. CYT and TFAA molecules are coloured according to symmetry equivalence (green and blue respectively) and hydrogen bonds are shown as dashed lines.
5H-dibenzo[a,d]cycloheptatriene-5-carboxamide trifluoroacetic acid solvate top
Crystal data top
C16H13NO·C2HF3O2F(000) = 720
Mr = 349.31Dx = 1.437 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1137 reflections
a = 12.1673 (11) Åθ = 3–25°
b = 6.3235 (6) ŵ = 0.12 mm1
c = 21.4525 (15) ÅT = 160 K
β = 101.932 (8)°Block, colourless
V = 1614.9 (2) Å30.16 × 0.13 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S
diffractometer
2995 independent reflections
Radiation source: Enhance (Mo) X-ray Source1423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Detector resolution: 15.9745 pixels mm-1θmax = 25.5°, θmin = 3.1°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(ABSPACK/CrysAlis RED; Oxford Diffraction, 2006)
k = 07
Tmin = 0.83, Tmax = 0.99l = 025
10796 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters not refined
wR(F2) = 0.178 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.42P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.000413
2984 reflectionsΔρmax = 0.73 e Å3
236 parametersΔρmin = 0.60 e Å3
24 restraints
Crystal data top
C16H13NO·C2HF3O2V = 1614.9 (2) Å3
Mr = 349.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1673 (11) ŵ = 0.12 mm1
b = 6.3235 (6) ÅT = 160 K
c = 21.4525 (15) Å0.16 × 0.13 × 0.08 mm
β = 101.932 (8)°
Data collection top
Oxford Diffraction Gemini S
diffractometer
2995 independent reflections
Absorption correction: multi-scan
(ABSPACK/CrysAlis RED; Oxford Diffraction, 2006)
1423 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.99Rint = 0.094
10796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08024 restraints
wR(F2) = 0.178H-atom parameters not refined
S = 1.05Δρmax = 0.73 e Å3
2984 reflectionsΔρmin = 0.60 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6284 (3)0.6720 (7)0.3296 (2)0.0461
C20.5488 (4)0.4854 (7)0.31163 (18)0.0431
C30.4806 (3)0.4971 (7)0.24379 (18)0.0380
C40.4965 (4)0.3481 (7)0.1996 (2)0.0507
C50.4406 (4)0.3618 (8)0.1366 (2)0.0578
C60.3726 (4)0.5332 (9)0.1180 (2)0.0576
C70.3553 (4)0.6826 (8)0.16104 (19)0.0519
C80.4077 (3)0.6646 (7)0.22567 (17)0.0393
C90.3794 (4)0.8214 (7)0.2691 (2)0.0475
C100.3773 (3)0.7968 (7)0.33147 (19)0.0456
C110.4028 (3)0.6095 (7)0.37105 (18)0.0369
C120.3488 (4)0.5854 (7)0.42250 (19)0.0470
C130.3646 (4)0.4094 (8)0.45999 (18)0.0515
C140.4337 (4)0.2524 (8)0.4474 (2)0.0570
C150.4912 (4)0.2755 (7)0.3988 (2)0.0497
C160.4774 (3)0.4536 (7)0.36104 (17)0.0374
C170.8909 (4)0.3112 (8)0.4387 (2)0.0572
C180.8197 (3)0.1386 (7)0.4008 (2)0.0461
N10.6679 (3)0.7697 (6)0.28446 (15)0.0533
O10.7936 (2)0.1490 (5)0.34338 (13)0.0564
O20.6593 (2)0.7215 (5)0.38684 (12)0.0591
O30.7904 (3)0.0019 (5)0.43735 (12)0.0618
F10.9217 (4)0.4524 (6)0.40116 (15)0.10400.964 (4)
F20.9828 (2)0.2331 (5)0.47540 (13)0.07140.964 (4)
F30.8361 (3)0.4082 (5)0.47792 (16)0.08450.964 (4)
F40.846 (3)0.502 (2)0.429 (3)0.0800*0.036 (4)
F50.992 (2)0.330 (8)0.425 (3)0.0800*0.036 (4)
F60.910 (5)0.282 (6)0.5010 (4)0.0800*0.036 (4)
H110.64610.73320.24500.0619*
H120.71500.87300.29450.0619*
H210.59690.36010.31390.0495*
H410.54490.23310.21250.0596*
H510.44990.25590.10770.0680*
H610.33860.54870.07540.0651*
H710.30680.79530.14730.0581*
H910.35790.95630.25210.0539*
H1010.35560.91690.35160.0541*
H1210.30220.69590.43120.0539*
H1310.32780.39470.49430.0619*
H1410.44230.12600.47130.0647*
H1510.54140.16760.39140.0557*
H50.74040.09350.41690.0888*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (2)0.065 (3)0.040 (3)0.002 (2)0.005 (2)0.003 (2)
C20.036 (2)0.047 (3)0.044 (2)0.008 (2)0.002 (2)0.006 (2)
C30.028 (2)0.046 (3)0.041 (2)0.007 (2)0.0095 (19)0.007 (2)
C40.044 (3)0.056 (3)0.052 (3)0.000 (2)0.011 (2)0.009 (2)
C50.056 (3)0.072 (4)0.048 (3)0.012 (3)0.015 (2)0.021 (3)
C60.053 (3)0.081 (4)0.036 (3)0.011 (3)0.002 (2)0.003 (3)
C70.044 (3)0.070 (3)0.041 (3)0.004 (2)0.004 (2)0.002 (3)
C80.030 (2)0.049 (3)0.038 (2)0.003 (2)0.0052 (19)0.000 (2)
C90.047 (3)0.041 (3)0.055 (3)0.002 (2)0.009 (2)0.001 (2)
C100.047 (3)0.045 (3)0.047 (3)0.003 (2)0.013 (2)0.006 (2)
C110.036 (2)0.037 (3)0.035 (2)0.006 (2)0.0022 (19)0.006 (2)
C120.047 (3)0.056 (3)0.038 (2)0.005 (2)0.008 (2)0.011 (2)
C130.050 (3)0.069 (4)0.035 (2)0.014 (3)0.007 (2)0.006 (3)
C140.058 (3)0.057 (3)0.050 (3)0.010 (3)0.004 (2)0.011 (3)
C150.043 (3)0.055 (3)0.048 (3)0.003 (2)0.001 (2)0.002 (2)
C160.040 (3)0.036 (3)0.032 (2)0.002 (2)0.0011 (19)0.003 (2)
C170.054 (3)0.064 (4)0.055 (3)0.003 (3)0.014 (3)0.002 (3)
C180.034 (3)0.060 (3)0.044 (3)0.002 (2)0.007 (2)0.008 (3)
N10.043 (2)0.078 (3)0.038 (2)0.017 (2)0.0045 (17)0.009 (2)
O10.0488 (19)0.082 (2)0.0375 (17)0.0082 (17)0.0064 (14)0.0091 (17)
O20.054 (2)0.090 (3)0.0300 (17)0.0283 (18)0.0024 (14)0.0002 (16)
O30.060 (2)0.085 (2)0.0362 (17)0.0297 (19)0.0009 (15)0.0067 (17)
F10.132 (3)0.101 (3)0.074 (2)0.059 (3)0.008 (2)0.020 (2)
F20.0448 (18)0.091 (2)0.0715 (19)0.0066 (16)0.0045 (14)0.0160 (17)
F30.075 (2)0.086 (2)0.095 (2)0.0090 (19)0.0230 (19)0.027 (2)
Geometric parameters (Å, º) top
C1—C21.525 (6)C11—C161.386 (5)
C1—N11.321 (5)C12—C131.363 (6)
C1—O21.247 (4)C12—H1210.942
C2—C31.521 (5)C13—C141.364 (6)
C2—C161.517 (6)C13—H1310.942
C2—H210.980C14—C151.378 (6)
C3—C41.379 (6)C14—H1410.945
C3—C81.384 (5)C15—C161.376 (5)
C4—C51.383 (6)C15—H1510.951
C4—H410.941C17—C181.520 (5)
C5—C61.372 (7)C17—F11.307 (4)
C5—H510.936C17—F21.322 (5)
C6—C71.368 (6)C17—F31.328 (5)
C6—H610.928C17—C181.520 (5)
C7—C81.406 (5)C17—F41.323 (7)
C7—H710.934C17—F51.323 (7)
C8—C91.451 (5)C17—F61.323 (7)
C9—C101.352 (5)C18—O11.209 (4)
C9—H910.944C18—O31.283 (5)
C10—C111.453 (6)N1—H110.865
C10—H1010.938N1—H120.867
C11—C121.405 (5)O3—H50.887
C2—C1—N1119.0 (4)C12—C11—C16118.2 (4)
C2—C1—O2119.3 (4)C11—C12—C13121.4 (4)
N1—C1—O2121.6 (4)C11—C12—H121118.3
C1—C2—C3113.4 (4)C13—C12—H121120.4
C1—C2—C16110.5 (3)C12—C13—C14119.6 (4)
C3—C2—C16113.4 (3)C12—C13—H131120.7
C1—C2—H21105.8C14—C13—H131119.7
C3—C2—H21106.9C13—C14—C15120.2 (4)
C16—C2—H21106.2C13—C14—H141120.7
C2—C3—C4119.9 (4)C15—C14—H141119.0
C2—C3—C8119.8 (4)C14—C15—C16120.8 (4)
C4—C3—C8120.2 (4)C14—C15—H151119.6
C3—C4—C5121.2 (4)C16—C15—H151119.6
C3—C4—H41119.6C2—C16—C11120.1 (4)
C5—C4—H41119.2C2—C16—C15120.1 (4)
C4—C5—C6118.6 (4)C11—C16—C15119.7 (4)
C4—C5—H51120.0C18—C17—F1111.5 (4)
C6—C5—H51121.3C18—C17—F2111.6 (4)
C5—C6—C7121.1 (4)F1—C17—F2107.9 (4)
C5—C6—H61119.4C18—C17—F3111.4 (4)
C7—C6—H61119.5F1—C17—F3108.7 (4)
C6—C7—C8120.6 (4)F2—C17—F3105.6 (4)
C6—C7—H71119.3C18—C17—F4113.56 (6)
C8—C7—H71120.1C18—C17—F5113.57 (6)
C7—C8—C3118.2 (4)F4—C17—F5105.08 (7)
C7—C8—C9117.4 (4)C18—C17—F6113.57 (6)
C3—C8—C9124.4 (4)F4—C17—F6105.08 (7)
C8—C9—C10127.8 (4)F5—C17—F6105.08 (7)
C8—C9—H91116.8C17—C18—O1120.4 (4)
C10—C9—H91115.3C17—C18—O3111.8 (4)
C9—C10—C11128.8 (4)O1—C18—O3127.8 (4)
C9—C10—H101115.3C1—N1—H11120.6
C11—C10—H101115.9C1—N1—H12119.5
C10—C11—C12118.0 (4)H11—N1—H12119.9
C10—C11—C16123.9 (4)C18—O3—H5113.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H5···O2i0.891.582.462 (4)173
N1—H11···O1ii0.862.232.976 (4)144
N1—H12···O1iii0.872.162.982 (5)159
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13NO·C2HF3O2
Mr349.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)160
a, b, c (Å)12.1673 (11), 6.3235 (6), 21.4525 (15)
β (°) 101.932 (8)
V3)1614.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.16 × 0.13 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini S
diffractometer
Absorption correctionMulti-scan
(ABSPACK/CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.83, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
10796, 2995, 1423
Rint0.094
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.178, 1.05
No. of reflections2984
No. of parameters236
No. of restraints24
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.73, 0.60

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H5···O2i0.891.582.462 (4)173
N1—H11···O1ii0.862.232.976 (4)144
N1—H12···O1iii0.872.162.982 (5)159
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk).

References

First citationBandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 30, 421–426.  Google Scholar
First citationDavis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88–94.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Bardin, J., Johnston, A., Florence, A. J., Leech, C. K., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm, DOI: 10.1039/b719717a.  Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1215-o1216
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds