metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Tris[2-(propyl­imino­meth­yl)phenolato-κ2N,O]iron(III)

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 14 June 2008; accepted 19 June 2008; online 25 June 2008)

The title compound, [Fe(C10H12NO)3], is isostructural with its CoIII-containing analogue. The FeIII cation is chelated by three Schiff base ligands via three N and three O atoms, and exhibits a slightly distorted octa­hedral geometry. The longest Fe—O and Fe—N bonds lie trans to each other and may be regarded as axial bonds, while the equatorial plane contains two mutually trans O and two trans N atoms.

Related literature

For related literature, see: Iskander et al. (2001[Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787-2792.]); Caruso et al. (2005[Caruso, U., Centore, R., Panunzi, B., Roviello, A. & Tuzi, A. (2005). Eur. J. Inorg. Chem. pp. 2747-2758.]); Sangeetha & Pal (2000[Sangeetha, N. R. & Pal, S. (2000). Bull. Chem. Soc. Jpn, 73, 357-361.]); Rajak et al. (2000[Rajak, K. K., Baruah, B., Rath, S. P. & Chakravorty, A. (2000). Inorg. Chem. 39, 1598-1605.]); Sutradhar et al. (2006[Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150-5158.]). For the isostructural Co complex, see: Li et al. (2008[Li, S., Wang, S.-B., Tang, K. & Ma, Y.-F. (2008). Acta Cryst. E64, m823.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H12NO)3]

  • Mr = 542.47

  • Tetragonal, I 41 /a

  • a = 19.369 (2) Å

  • c = 30.216 (3) Å

  • V = 11336 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 293 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.956

  • 41740 measured reflections

  • 5198 independent reflections

  • 3125 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.099

  • S = 1.00

  • 5198 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of novel discrete Schiff-basd metal complexes has attracted long-lasting research interest, not only because of their appealing structural and topological features, but also due to their unusual optical, electronic, magnetic and catalytic properties, and their further potential medical value derived from their antiviral properties and inhibition of angiogenesis (Iskander et al. 2001; Caruso et al. 2005; Sangeetha & Pal, 2000; Rajak et al. 2000; Sutradhar et al. 2006). Here we report the synthesis and X-ray crystal structure analysis of the title compound, which is isostructural with its CoIII-containing analogue (Li et al., 2008).

As shown in Figure 1, the FeIII cation is chelated by three Schiff base ligands via three N and three O atoms, and exhibits a slightly distorted octahedral geometry. The Fe—N and Fe—O bond lengths are in the ranges 1.917 (3)–1.969 (3) and 1.846 (2)–1.913 (2) Å, respectively. The Fe1—O2 and Fe1—N2 bonds are much longer than the other related ones. Thus the atoms O1, O3, N1, and N3 may be considered to lie in the equatorial plane, and O2 and N2 in the axial coordination sites.

Related literature top

For related literature, see: Iskander et al. (2001); Caruso et al. (2005); Sangeetha & Pal (2000); Rajak et al. (2000); Sutradhar et al. (2006). For the isostructural Co complex, see: Li et al. (2008).

Experimental top

A mixture of iron(III) acetylacetonate (0.5 mmol) and 2-(propyliminomethyl)phenol (0.5 mmol) in 20 ml methanol was refluxed for several hours. The filtrate obtained from this soution was allowed to evaporate at room temperature for three days. Brown crystals were obtained with a yield of 5%. Anal. Calc. for C30H36FeN3O3: C 65.36, H 6.64 N 7.74%; Found: C 65.21, H 6.59, N 7.67%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
Tris[2-(propyliminomethyl)phenolato-κ2N,O]iron(III) top
Crystal data top
[Fe(C10H12NO)3]Dx = 1.271 Mg m3
Mr = 542.47Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 5198 reflections
Hall symbol: -I 4adθ = 1.3–25.5°
a = 19.369 (2) ŵ = 0.57 mm1
c = 30.216 (3) ÅT = 293 K
V = 11336 (2) Å3Block, green
Z = 160.12 × 0.10 × 0.08 mm
F(000) = 4592
Data collection top
Bruker APEXII CCD
diffractometer
5198 independent reflections
Radiation source: fine-focus sealed tube3125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2322
Tmin = 0.935, Tmax = 0.956k = 2323
41740 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
5198 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C10H12NO)3]Z = 16
Mr = 542.47Mo Kα radiation
Tetragonal, I41/aµ = 0.57 mm1
a = 19.369 (2) ÅT = 293 K
c = 30.216 (3) Å0.12 × 0.10 × 0.08 mm
V = 11336 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3125 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.956Rint = 0.073
41740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
5198 reflectionsΔρmin = 0.27 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.22632 (2)0.98149 (2)0.992992 (13)0.05735 (17)
C10.14742 (16)0.94922 (15)0.89961 (9)0.0579 (8)
C20.10654 (19)0.94259 (17)0.86092 (10)0.0703 (9)
H20.12020.96500.83520.084*
C30.04851 (19)0.90467 (18)0.86056 (12)0.0783 (10)
H30.02130.90200.83530.094*
C40.03008 (16)0.86948 (17)0.89893 (12)0.0755 (9)
H40.00970.84260.89890.091*
C50.06917 (16)0.87330 (15)0.93694 (10)0.0647 (8)
H50.05540.84880.96190.078*
C60.12904 (15)0.91330 (14)0.93872 (10)0.0548 (7)
C70.09561 (16)0.97163 (15)1.05726 (9)0.0577 (8)
C80.03352 (16)0.95695 (16)1.07764 (10)0.0693 (9)
H80.00470.98431.07130.083*
C90.02656 (19)0.90334 (17)1.10688 (11)0.0745 (9)
H90.01580.89431.12020.089*
C100.0822 (2)0.86399 (18)1.11603 (10)0.0749 (9)
H100.07740.82661.13510.090*
C110.14583 (19)0.87783 (16)1.09771 (10)0.0706 (9)
H110.18360.85061.10530.085*
C120.15458 (16)0.93302 (15)1.06737 (9)0.0561 (8)
C130.34061 (18)1.0494 (2)1.03341 (11)0.0738 (9)
C140.3673 (2)1.1078 (2)1.05590 (13)0.1009 (12)
H140.34041.14741.05870.121*
C150.4327 (2)1.1063 (3)1.07356 (14)0.1233 (17)
H150.44941.14491.08850.148*
C160.4732 (2)1.0498 (3)1.06961 (15)0.1199 (16)
H160.51721.04951.08190.144*
C170.4490 (2)0.9930 (3)1.04737 (13)0.1051 (13)
H170.47720.95441.04450.126*
C180.38262 (17)0.9922 (2)1.02892 (11)0.0764 (10)
C190.36133 (19)0.9318 (2)1.00561 (11)0.0781 (10)
H190.39450.89741.00260.094*
C200.20828 (17)0.98920 (16)0.89763 (11)0.0678 (9)
H200.22351.00280.86980.081*
C210.09974 (16)1.02899 (16)1.02768 (10)0.0660 (8)
H210.06311.06001.02850.079*
C220.14568 (17)1.10734 (17)0.97424 (12)0.0844 (10)
H22A0.13971.09510.94330.101*
H22B0.19031.12970.97690.101*
C230.0919 (2)1.15896 (17)0.98566 (12)0.0889 (11)
H23A0.09711.17301.01630.107*
H23B0.04651.13860.98210.107*
C240.0987 (2)1.22091 (17)0.95597 (13)0.1048 (13)
H24A0.14641.23400.95390.157*
H24B0.07251.25860.96800.157*
H24C0.08141.20980.92700.157*
C250.3097 (2)1.0451 (3)0.92058 (14)0.1238 (15)
H25A0.33411.05150.94830.149*
H25B0.33731.01360.90290.149*
C260.3106 (3)1.1023 (3)0.9010 (2)0.126 (3)
H26A0.28311.13460.91820.240*
H26B0.28781.09660.87270.240*
C270.3813 (2)1.1356 (2)0.89256 (15)0.1331 (17)
H27A0.39351.16430.91730.200*
H27B0.37921.16320.86620.200*
H27C0.41541.10010.88900.200*
C280.29461 (18)0.85217 (19)0.96588 (12)0.0870 (11)
H28A0.33960.83580.95650.104*
H28B0.26650.85840.93960.104*
C290.2615 (2)0.7984 (2)0.99533 (14)0.1041 (13)
H29A0.21640.81521.00430.125*
H29B0.25410.75690.97790.125*
C300.3005 (2)0.7793 (2)1.03570 (18)0.1528 (19)
H30A0.34390.75911.02740.229*
H30B0.27430.74651.05260.229*
H30C0.30870.81981.05320.229*
N10.30265 (14)0.91895 (14)0.98831 (8)0.0679 (7)
N20.24462 (14)1.00853 (13)0.93127 (9)0.0697 (7)
N30.14842 (12)1.04268 (13)0.99995 (8)0.0635 (7)
O10.27883 (11)1.05426 (11)1.01689 (7)0.0753 (6)
O20.21526 (10)0.94675 (11)1.05183 (6)0.0651 (6)
O30.16501 (10)0.91380 (10)0.97551 (6)0.0622 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0520 (3)0.0673 (3)0.0527 (3)0.0034 (2)0.0019 (2)0.0006 (2)
C10.068 (2)0.0595 (19)0.0458 (18)0.0098 (17)0.0056 (16)0.0015 (15)
C20.092 (3)0.071 (2)0.049 (2)0.010 (2)0.0032 (18)0.0026 (16)
C30.086 (3)0.086 (3)0.063 (2)0.001 (2)0.011 (2)0.0124 (19)
C40.064 (2)0.079 (2)0.084 (3)0.0000 (18)0.007 (2)0.021 (2)
C50.066 (2)0.062 (2)0.066 (2)0.0029 (17)0.0066 (17)0.0042 (16)
C60.060 (2)0.0522 (18)0.0517 (19)0.0087 (15)0.0042 (16)0.0050 (15)
C70.064 (2)0.0522 (18)0.0571 (19)0.0062 (16)0.0055 (16)0.0028 (15)
C80.070 (2)0.064 (2)0.074 (2)0.0055 (17)0.0133 (18)0.0013 (18)
C90.085 (3)0.068 (2)0.070 (2)0.005 (2)0.0171 (19)0.0010 (19)
C100.104 (3)0.064 (2)0.057 (2)0.006 (2)0.013 (2)0.0015 (16)
C110.095 (3)0.062 (2)0.055 (2)0.0135 (19)0.0056 (19)0.0051 (17)
C120.067 (2)0.0582 (19)0.0436 (17)0.0072 (17)0.0007 (16)0.0091 (15)
C130.057 (2)0.095 (3)0.069 (2)0.010 (2)0.0062 (18)0.006 (2)
C140.072 (3)0.126 (3)0.105 (3)0.012 (2)0.004 (2)0.034 (3)
C150.074 (3)0.184 (5)0.112 (3)0.033 (3)0.001 (3)0.050 (3)
C160.065 (3)0.183 (5)0.112 (4)0.007 (3)0.016 (3)0.023 (4)
C170.061 (3)0.153 (4)0.101 (3)0.001 (3)0.000 (2)0.001 (3)
C180.053 (2)0.106 (3)0.070 (2)0.004 (2)0.0030 (18)0.002 (2)
C190.066 (2)0.095 (3)0.074 (2)0.019 (2)0.013 (2)0.002 (2)
C200.074 (2)0.077 (2)0.052 (2)0.0004 (19)0.0096 (17)0.0060 (17)
C210.060 (2)0.064 (2)0.074 (2)0.0074 (17)0.0052 (17)0.0079 (17)
C220.075 (2)0.079 (2)0.099 (3)0.005 (2)0.015 (2)0.027 (2)
C230.104 (3)0.074 (2)0.089 (3)0.007 (2)0.005 (2)0.002 (2)
C240.130 (3)0.065 (2)0.120 (3)0.001 (2)0.008 (3)0.021 (2)
C250.127 (4)0.144 (4)0.100 (3)0.035 (3)0.002 (3)0.037 (3)
C260.148 (8)0.122 (7)0.110 (7)0.007 (6)0.014 (6)0.005 (6)
C270.124 (4)0.118 (3)0.157 (4)0.063 (3)0.028 (3)0.000 (3)
C280.080 (3)0.092 (3)0.089 (3)0.021 (2)0.007 (2)0.024 (2)
C290.108 (3)0.076 (3)0.129 (4)0.014 (2)0.000 (3)0.007 (3)
C300.139 (4)0.138 (4)0.182 (5)0.003 (3)0.040 (4)0.040 (4)
N10.0608 (17)0.083 (2)0.0596 (16)0.0104 (15)0.0072 (14)0.0056 (14)
N20.0630 (17)0.0785 (19)0.0675 (18)0.0054 (15)0.0064 (15)0.0089 (15)
N30.0560 (15)0.0691 (17)0.0653 (17)0.0024 (13)0.0007 (13)0.0120 (14)
O10.0568 (14)0.0766 (15)0.0925 (17)0.0006 (12)0.0033 (12)0.0077 (12)
O20.0572 (13)0.0848 (15)0.0532 (12)0.0147 (11)0.0012 (10)0.0047 (11)
O30.0650 (13)0.0710 (14)0.0506 (12)0.0013 (10)0.0026 (10)0.0063 (10)
Geometric parameters (Å, º) top
Fe1—O31.846 (2)C17—C181.402 (5)
Fe1—O11.882 (2)C17—H170.930
Fe1—O21.913 (2)C18—C191.425 (5)
Fe1—N11.917 (3)C19—N11.276 (4)
Fe1—N31.930 (2)C19—H190.930
Fe1—N21.969 (3)C20—N21.292 (4)
C1—C201.412 (4)C20—H200.930
C1—C21.418 (4)C21—N31.289 (3)
C1—C61.417 (4)C21—H210.930
C2—C31.343 (4)C22—N31.475 (4)
C2—H20.930C22—C231.484 (4)
C3—C41.392 (4)C22—H22A0.970
C3—H30.930C22—H22B0.970
C4—C51.378 (4)C23—C241.504 (4)
C4—H40.930C23—H23A0.970
C5—C61.396 (4)C23—H23B0.970
C5—H50.930C24—H24A0.960
C6—O31.312 (3)C24—H24B0.960
C7—C81.381 (4)C24—H24C0.960
C7—C121.399 (4)C25—C261.257 (5)
C7—C211.428 (4)C25—N21.481 (5)
C8—C91.370 (4)C25—H25A0.970
C8—H80.930C25—H25B0.970
C9—C101.348 (4)C26—C271.535 (6)
C9—H90.930C26—H26A0.970
C10—C111.378 (4)C26—H26B0.970
C10—H100.930C27—H27A0.960
C11—C121.418 (4)C27—H27B0.960
C11—H110.930C27—H27C0.960
C12—O21.293 (3)C28—N11.469 (4)
C13—O11.300 (4)C28—C291.514 (5)
C13—C181.382 (5)C28—H28A0.970
C13—C141.418 (5)C28—H28B0.970
C14—C151.376 (5)C29—C301.482 (5)
C14—H140.930C29—H29A0.970
C15—C161.352 (6)C29—H29B0.970
C15—H150.930C30—H30A0.960
C16—C171.372 (5)C30—H30B0.960
C16—H160.930C30—H30C0.960
O3—Fe1—O1171.58 (9)N2—C20—C1125.5 (3)
O3—Fe1—O286.80 (8)N2—C20—H20117.2
O1—Fe1—O288.13 (9)C1—C20—H20117.2
O3—Fe1—N191.50 (11)N3—C21—C7127.4 (3)
O1—Fe1—N194.86 (11)N3—C21—H21116.3
O2—Fe1—N186.14 (9)C7—C21—H21116.3
O3—Fe1—N387.97 (10)N3—C22—C23118.4 (3)
O1—Fe1—N385.46 (10)N3—C22—H22A107.7
O2—Fe1—N391.56 (9)C23—C22—H22A107.7
N1—Fe1—N3177.67 (10)N3—C22—H22B107.7
O3—Fe1—N291.93 (10)C23—C22—H22B107.7
O1—Fe1—N293.83 (11)H22A—C22—H22B107.1
O2—Fe1—N2173.65 (9)C22—C23—C24109.7 (3)
N1—Fe1—N287.67 (10)C22—C23—H23A109.7
N3—Fe1—N294.62 (10)C24—C23—H23A109.7
C20—C1—C2118.8 (3)C22—C23—H23B109.7
C20—C1—C6121.0 (3)C24—C23—H23B109.7
C2—C1—C6120.2 (3)H23A—C23—H23B108.2
C3—C2—C1121.6 (3)C23—C24—H24A109.5
C3—C2—H2119.2C23—C24—H24B109.5
C1—C2—H2119.2H24A—C24—H24B109.5
C2—C3—C4118.4 (3)C23—C24—H24C109.5
C2—C3—H3120.8H24A—C24—H24C109.5
C4—C3—H3120.8H24B—C24—H24C109.5
C5—C4—C3121.8 (3)C26—C25—N2122.4 (5)
C5—C4—H4119.1C26—C25—H25A106.7
C3—C4—H4119.1N2—C25—H25A106.7
C4—C5—C6121.2 (3)C26—C25—H25B106.7
C4—C5—H5119.4N2—C25—H25B106.7
C6—C5—H5119.4H25A—C25—H25B106.6
O3—C6—C5118.6 (3)C25—C26—C27117.4 (5)
O3—C6—C1124.7 (3)C25—C26—H26A108.0
C5—C6—C1116.7 (3)C27—C26—H26A107.9
C8—C7—C12120.2 (3)C25—C26—H26B107.9
C8—C7—C21119.2 (3)C27—C26—H26B107.9
C12—C7—C21120.5 (3)H26A—C26—H26B107.2
C9—C8—C7122.0 (3)C26—C27—H27A109.5
C9—C8—H8119.0C26—C27—H27B109.5
C7—C8—H8119.0H27A—C27—H27B109.5
C10—C9—C8118.8 (3)C26—C27—H27C109.5
C10—C9—H9120.6H27A—C27—H27C109.5
C8—C9—H9120.6H27B—C27—H27C109.5
C9—C10—C11121.5 (3)N1—C28—C29112.3 (3)
C9—C10—H10119.2N1—C28—H28A109.1
C11—C10—H10119.2C29—C28—H28A109.1
C10—C11—C12120.9 (3)N1—C28—H28B109.1
C10—C11—H11119.6C29—C28—H28B109.1
C12—C11—H11119.6H28A—C28—H28B107.9
O2—C12—C7123.5 (3)C30—C29—C28116.0 (4)
O2—C12—C11119.9 (3)C30—C29—H29A108.3
C7—C12—C11116.5 (3)C28—C29—H29A108.3
O1—C13—C18124.2 (3)C30—C29—H29B108.3
O1—C13—C14117.5 (4)C28—C29—H29B108.3
C18—C13—C14118.3 (3)H29A—C29—H29B107.4
C15—C14—C13120.3 (4)C29—C30—H30A109.5
C15—C14—H14119.9C29—C30—H30B109.5
C13—C14—H14119.9H30A—C30—H30B109.5
C14—C15—C16121.2 (4)C29—C30—H30C109.5
C14—C15—H15119.4H30A—C30—H30C109.5
C16—C15—H15119.4H30B—C30—H30C109.5
C15—C16—C17119.6 (4)C19—N1—C28117.1 (3)
C15—C16—H16120.2C19—N1—Fe1122.2 (2)
C17—C16—H16120.2C28—N1—Fe1120.6 (2)
C16—C17—C18121.2 (4)C20—N2—C25115.5 (3)
C16—C17—H17119.4C20—N2—Fe1124.7 (2)
C18—C17—H17119.4C25—N2—Fe1119.1 (2)
C17—C18—C13119.5 (4)C21—N3—C22119.4 (3)
C17—C18—C19118.1 (4)C21—N3—Fe1121.1 (2)
C13—C18—C19122.4 (3)C22—N3—Fe1119.5 (2)
N1—C19—C18128.3 (3)C13—O1—Fe1126.2 (2)
N1—C19—H19115.8C12—O2—Fe1120.76 (18)
C18—C19—H19115.8C6—O3—Fe1126.11 (18)

Experimental details

Crystal data
Chemical formula[Fe(C10H12NO)3]
Mr542.47
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)19.369 (2), 30.216 (3)
V3)11336 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.935, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
41740, 5198, 3125
Rint0.073
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.099, 1.00
No. of reflections5198
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105–07).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaruso, U., Centore, R., Panunzi, B., Roviello, A. & Tuzi, A. (2005). Eur. J. Inorg. Chem. pp. 2747–2758.  Web of Science CSD CrossRef Google Scholar
First citationIskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787–2792.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S., Wang, S.-B., Tang, K. & Ma, Y.-F. (2008). Acta Cryst. E64, m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajak, K. K., Baruah, B., Rath, S. P. & Chakravorty, A. (2000). Inorg. Chem. 39, 1598–1605.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSangeetha, N. R. & Pal, S. (2000). Bull. Chem. Soc. Jpn, 73, 357–361.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150–5158.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds