metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­tris­[μ4-(p-phenyl­enedi­­oxy)di­acetato]didysprosium(III)] dihydrate]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 23 May 2008; accepted 11 June 2008; online 19 June 2008)

The title dysprosium coordination polymer, {[Dy2(C10H8O6)3(H2O)2]·2H2O}n, was synthesized by reacting dysprosium(III) nitrate and the flexible ligand (p-phenyl­enedi­oxy)diacetic acid under hydro­thermal conditions. Each DyIII ion is coordinated by nine O atoms in a tricapped trigonal prismatic geometry. The DyO9 polyhedra form layers parallel to the bc plane. The rigid benzene rings of the anions link the layers along the a axis, forming a three-dimensional framework.

Related literature

For related literature, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Li & Han (2006[Li, X.-F. & Han, Z.-B. (2006). Acta Cryst. E62, m1961-m1963.]); Michl (1995[Michl, J. (1995). Modular Chemistry. Dordrecht: Kluwer Academic Publishers.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy2(C10H8O6)3(H2O)2]·2H2O

  • Mr = 1069.56

  • Monoclinic, P 21 /c

  • a = 12.080 (2) Å

  • b = 16.615 (3) Å

  • c = 8.8802 (18) Å

  • β = 109.32 (3)°

  • V = 1682.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 293 (2) K

  • 0.19 × 0.16 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.437, Tmax = 0.548

  • 16183 measured reflections

  • 3838 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.059

  • S = 1.05

  • 3838 reflections

  • 256 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H16A⋯O6i 0.80 (3) 2.11 (5) 2.706 (4) 131 (6)
O1W—H16B⋯O2W 0.79 (3) 1.98 (4) 2.755 (6) 166 (7)
O2W—H17A⋯O3 0.82 (3) 2.41 (6) 2.952 (5) 125 (5)
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Extensive efforts have been made to construct metal-organic frameworks (MOFs) owing to the benefits they offer such as functional mesoscopic phases, modified surfaces and designed crystals (Michl, 1995). The carboxylate group can offer more solid frameworks by forming M—O—C cluster. The recent works focus on metals and rigid multidentate phenylcarboxylates to form MOFs (Yaghi et al., 1998; Eddaoudi et al., 2001). The chemistry of rare earth compounds is always an attactive research direction due to their complicated geometry and many important applications. We have constructed a MOF by using a rare earth and a flexible multidentate carboxylate ligand with rigid phenyl core, and its crystal structure is reported here.

The asymmetric unit of the title compound contains one Dy atom, one and half (p-phenylenedioxy)diacetate (BDOA) anions and two water molecules. One of the anions is loacted in a general position (say BDOA-N) and the other (say BDOA-C) lies on an inversion center. Each DyIII cation is coordinated by two BDOA-C anions and four BDOA-N anions (Fig.1). The BDOA-C anion provides O atom from the carboxylate group, while the O atoms provided by the BDOA-N anions are from both carboxylate and phenol groups. Each DyIII ion is coordinated by nine O atoms; seven out of the nine O atoms are from carboxylate groups of six BDOA anions, one from the phenolic O atom of one BDOA anion and one from a coordinated water molecule. The coordination environment around the DyIII ion may be described as tricapped trigonal-prismatic, with Dy—O distances in the range 2.333 (10) Å-2.829 (4) Å and O—Dy—O angles in the range 47.86 (10)°-148.5 (1)°. A pair of DyIII atoms are bridged by the two ligands in different coordination modes (Fig. 1). The Dy···Dy distance is 4.1404 (9) Å.

The adjacent DyO9 polyhedra form edge-shared dimer, with four BDOA anions. The edge-shared DyO9 polyhedra are connected to form layers parallel to the bc plane. The rigid phenyl cores of BDOA anions link the layers along the a axis to form a three-dimensional framework (Fig.2). The uncoordinated water molecules are trapped inside the channel formed by the DyO9 polyhedra and phenyl core of the BDOA anions.

O—H···O hydrogen bonds are observed in the crystal structure (Table 1). The crystal structure of the title compound is similar to that of [La2(1,4-BDOA)3(H2O)]2].2H2O (Li et al., 2006).

Related literature top

For related literature, see: Eddaoudi et al. (2001); Li & Han (2006); Michl (1995); Yaghi et al. (1998).

Experimental top

1,4-BDOA (0.30 g, 1.33 mmol) and Dy(NO3)3.6H2O (0.30 g, 0.67 mmol) were successively dissolved in aquous NaOH (0.13 g, 3.3 mmol NaOH/7.5 ml distilled water). The molar ratio of Dy(NO3)3.6H2O: 1,4-BDOA: NaOH: H2O was 1:2:5:630. The solution was continuously stirred for 1 h at room temperature. Finally, the solution was sealed into 23 ml autoclave and was heated at 438 K for 6 d and then naturally cooled to room temperature, to obtain colourless crystals of the title compound.

Refinement top

Water H atoms were located in a difference Fourier map and were refined with O-H = 0.84 (1) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.5Ueq(O). The remaining H-atoms were placed in calculated positions (C-H = 0.93-0.97 Å) and were included in the refinement in the riding-model approximation, with U(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The dinuclear unit of the title polymeric complex, showing the atomic labelling and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity [symmetry codes: (i) -x, -y, -z; (ii) 1 + x, y, 1 + z; (iii) 1 + x, 1/2 - y, 3/2 + z; (iv) -1 - x, -y, -1 - z.]
[Figure 2] Fig. 2. A polyhedral and ball-stick plot of three-dimensional network in the complex, viewed along the c axis. O atoms are shown in dark gray and C atoms in light gray. H atoms have been omitted for clarity.
Poly[[diaquatris[µ4-(p-phenylenedioxy)diacetato]didysprosium(III)] dihydrate] top
Crystal data top
[Dy2(C10H8O6)3(H2O)2]·2H2OF(000) = 1040
Mr = 1069.56Dx = 2.112 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 12.080 (2) Åθ = 3.0–27.5°
b = 16.615 (3) ŵ = 4.50 mm1
c = 8.8802 (18) ÅT = 293 K
β = 109.32 (3)°Block, grey yellow
V = 1682.0 (6) Å30.19 × 0.16 × 0.13 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3838 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2121
Tmin = 0.437, Tmax = 0.548l = 1111
16183 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0147P)2 + 5.1969P]
where P = (Fo2 + 2Fc2)/3
3838 reflections(Δ/σ)max = 0.009
256 parametersΔρmax = 0.83 e Å3
6 restraintsΔρmin = 0.93 e Å3
Crystal data top
[Dy2(C10H8O6)3(H2O)2]·2H2OV = 1682.0 (6) Å3
Mr = 1069.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.080 (2) ŵ = 4.50 mm1
b = 16.615 (3) ÅT = 293 K
c = 8.8802 (18) Å0.19 × 0.16 × 0.13 mm
β = 109.32 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3838 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3229 reflections with I > 2σ(I)
Tmin = 0.437, Tmax = 0.548Rint = 0.043
16183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0286 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.83 e Å3
3838 reflectionsΔρmin = 0.93 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.047406 (15)0.117791 (10)0.06685 (2)0.01642 (6)
O10.1292 (2)0.11347 (17)0.1593 (3)0.0272 (7)
O1W0.0933 (3)0.2099 (2)0.1170 (4)0.0492 (11)
H16A0.051 (5)0.246 (3)0.161 (7)0.074*
H16B0.145 (4)0.228 (3)0.046 (6)0.074*
O20.1802 (2)0.01721 (17)0.1976 (3)0.0255 (6)
O30.3483 (2)0.15102 (17)0.3735 (3)0.0252 (6)
O40.7742 (2)0.21741 (16)0.8419 (3)0.0214 (6)
O50.8998 (3)0.35594 (17)1.1500 (3)0.0244 (6)
O60.9551 (3)0.23500 (18)1.0955 (4)0.0335 (8)
O70.1721 (3)0.09109 (18)0.0991 (4)0.0312 (7)
O80.0580 (3)0.0133 (2)0.1313 (4)0.0362 (8)
O90.3019 (3)0.0217 (2)0.2669 (4)0.0417 (9)
C10.1940 (3)0.0565 (2)0.2298 (5)0.0199 (8)
C20.3012 (3)0.0727 (2)0.3743 (5)0.0245 (9)
H2A0.28030.06640.47010.029*
H2B0.36110.03310.37780.029*
C30.4522 (3)0.1666 (2)0.4950 (5)0.0193 (8)
C40.5023 (3)0.1140 (2)0.6214 (4)0.0211 (8)
H40.46500.06600.62860.025*
C50.5082 (4)0.2383 (3)0.4866 (5)0.0254 (9)
H50.47420.27390.40330.030*
C60.6087 (3)0.1338 (2)0.7369 (5)0.0216 (8)
H60.64180.09910.82220.026*
C70.6154 (4)0.2576 (3)0.6023 (5)0.0242 (9)
H70.65300.30580.59670.029*
C80.6648 (3)0.2037 (2)0.7256 (4)0.0176 (8)
C90.7965 (3)0.2992 (2)0.9002 (5)0.0210 (8)
H9A0.72550.32290.90920.025*
H9B0.82220.33170.82720.025*
C100.8909 (3)0.2962 (2)1.0620 (4)0.0179 (8)
C110.1401 (3)0.0239 (3)0.1581 (5)0.0242 (9)
C120.1937 (4)0.0131 (3)0.2737 (6)0.0397 (12)
H12A0.20540.07020.25100.048*
H12B0.13890.00750.38120.048*
C130.3980 (4)0.0092 (3)0.1300 (6)0.0340 (11)
C140.4975 (4)0.0529 (3)0.1204 (6)0.0361 (11)
H140.49600.08870.20140.043*
C150.4008 (4)0.0437 (3)0.0085 (6)0.0357 (11)
H150.33420.07310.01350.043*
O2W0.2446 (4)0.2835 (3)0.1500 (5)0.0604 (12)
H17A0.229 (6)0.258 (4)0.219 (7)0.091*
H17B0.303 (5)0.260 (4)0.133 (8)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01428 (9)0.01573 (9)0.01598 (9)0.00025 (7)0.00061 (6)0.00046 (7)
O10.0256 (15)0.0200 (14)0.0229 (14)0.0024 (12)0.0097 (12)0.0005 (12)
O1W0.044 (2)0.060 (3)0.0311 (19)0.0266 (19)0.0044 (16)0.0118 (18)
O20.0257 (15)0.0170 (14)0.0278 (15)0.0069 (11)0.0010 (13)0.0013 (12)
O30.0199 (14)0.0197 (14)0.0236 (14)0.0063 (11)0.0093 (12)0.0046 (12)
O40.0150 (13)0.0162 (14)0.0233 (14)0.0012 (10)0.0068 (11)0.0050 (11)
O50.0303 (15)0.0203 (14)0.0180 (13)0.0027 (12)0.0018 (12)0.0078 (12)
O60.0304 (17)0.0256 (17)0.0284 (16)0.0090 (13)0.0118 (13)0.0125 (13)
O70.0436 (19)0.0238 (16)0.0336 (17)0.0028 (14)0.0226 (15)0.0064 (13)
O80.0270 (16)0.046 (2)0.0300 (16)0.0127 (15)0.0015 (14)0.0092 (15)
O90.0338 (18)0.063 (2)0.0360 (18)0.0116 (17)0.0216 (16)0.0022 (17)
C10.0173 (18)0.022 (2)0.0179 (18)0.0061 (15)0.0022 (15)0.0016 (16)
C20.021 (2)0.018 (2)0.026 (2)0.0061 (16)0.0042 (17)0.0026 (17)
C30.0142 (17)0.019 (2)0.0204 (18)0.0005 (14)0.0000 (15)0.0004 (15)
C40.0196 (18)0.0181 (19)0.0205 (18)0.0024 (16)0.0003 (15)0.0044 (16)
C50.023 (2)0.023 (2)0.021 (2)0.0029 (17)0.0057 (17)0.0077 (17)
C60.0202 (18)0.017 (2)0.0211 (19)0.0009 (15)0.0024 (16)0.0027 (15)
C70.021 (2)0.020 (2)0.026 (2)0.0051 (16)0.0002 (17)0.0025 (17)
C80.0128 (17)0.0201 (19)0.0166 (18)0.0003 (14)0.0003 (15)0.0046 (15)
C90.024 (2)0.0146 (19)0.0195 (19)0.0001 (15)0.0008 (16)0.0022 (15)
C100.0168 (18)0.0158 (19)0.0178 (18)0.0027 (14)0.0013 (15)0.0026 (15)
C110.020 (2)0.026 (2)0.027 (2)0.0014 (16)0.0099 (17)0.0060 (18)
C120.036 (3)0.043 (3)0.043 (3)0.001 (2)0.017 (2)0.014 (2)
C130.032 (2)0.036 (3)0.044 (3)0.011 (2)0.025 (2)0.001 (2)
C140.043 (3)0.032 (3)0.047 (3)0.009 (2)0.032 (2)0.009 (2)
C150.033 (2)0.033 (3)0.050 (3)0.003 (2)0.026 (2)0.001 (2)
O2W0.055 (3)0.060 (3)0.051 (3)0.016 (2)0.003 (2)0.013 (2)
Geometric parameters (Å, º) top
Dy1—O8i2.333 (3)C3—O31.382 (4)
Dy1—O2i2.341 (3)C3—C51.385 (5)
Dy1—O12.399 (3)C3—C41.392 (5)
Dy1—O6ii2.417 (3)C4—C61.392 (5)
Dy1—O5iii2.421 (3)C4—H40.93
Dy1—O1W2.435 (4)C5—C71.399 (5)
Dy1—O72.471 (3)C5—H50.93
Dy1—O4ii2.624 (3)C6—C81.366 (5)
Dy1—O82.830 (4)C6—H60.93
O1—C11.255 (5)C7—C81.387 (5)
O1W—H16A0.80 (3)C7—H70.93
O1W—H16B0.79 (3)C9—C101.512 (5)
O2—C11.256 (5)C9—H9A0.97
O3—C31.382 (4)C9—H9B0.97
O3—C21.421 (5)C11—C121.514 (6)
O4—C81.400 (4)C12—H12A0.97
O4—C91.448 (4)C12—H12B0.97
O5—C101.246 (5)C13—C141.382 (7)
O6—C101.253 (5)C13—C151.384 (7)
O7—C111.240 (5)C14—C15iv1.383 (7)
O8—C111.257 (5)C14—H140.93
O9—C131.391 (6)C15—C14iv1.383 (7)
O9—C121.413 (6)C15—H150.93
C1—C21.516 (5)O2W—H17A0.82 (3)
C2—H2A0.97O2W—H17B0.86 (3)
C2—H2B0.97
O8i—Dy1—O2i71.77 (11)O3—C2—C1113.0 (3)
O8i—Dy1—O177.10 (10)O3—C2—H2A109.0
O2i—Dy1—O1131.87 (10)C1—C2—H2A109.0
O8i—Dy1—O6ii147.73 (10)O3—C2—H2B109.0
O2i—Dy1—O6ii137.92 (11)C1—C2—H2B109.0
O1—Dy1—O6ii72.10 (10)H2A—C2—H2B107.8
O8i—Dy1—O5iii81.77 (11)O3—C3—C5116.9 (3)
O2i—Dy1—O5iii73.24 (10)O3—C3—C5116.9 (3)
O1—Dy1—O5iii136.95 (11)O3—C3—C4123.6 (3)
O6ii—Dy1—O5iii114.92 (10)O3—C3—C4123.6 (3)
O8i—Dy1—O1W87.26 (14)C5—C3—C4119.5 (3)
O2i—Dy1—O1W139.73 (12)C3—C4—C6119.7 (4)
O1—Dy1—O1W71.98 (11)C3—C4—H4120.1
O6ii—Dy1—O1W74.39 (14)C6—C4—H4120.1
O5iii—Dy1—O1W69.93 (11)C3—C5—C7120.5 (4)
O8i—Dy1—O7120.17 (11)C3—C5—H5119.7
O2i—Dy1—O773.43 (11)C7—C5—H5119.7
O1—Dy1—O792.54 (11)C8—C6—C4120.4 (4)
O6ii—Dy1—O771.26 (11)C8—C6—H6119.8
O5iii—Dy1—O7130.44 (10)C4—C6—H6119.8
O1W—Dy1—O7145.27 (13)C8—C7—C5119.0 (4)
O8i—Dy1—O4ii148.49 (9)C8—C7—H7120.5
O2i—Dy1—O4ii86.51 (9)C5—C7—H7120.5
O1—Dy1—O4ii133.60 (9)C6—C8—C7120.8 (3)
O6ii—Dy1—O4ii61.51 (9)C6—C8—O4117.0 (3)
O5iii—Dy1—O4ii70.01 (10)C7—C8—O4122.2 (3)
O1W—Dy1—O4ii95.66 (12)O4—C9—C10107.5 (3)
O7—Dy1—O4ii72.37 (10)O4—C9—H9A110.2
O8i—Dy1—O873.76 (13)C10—C9—H9A110.2
O2i—Dy1—O866.07 (10)O4—C9—H9B110.2
O1—Dy1—O870.55 (10)C10—C9—H9B110.2
O6ii—Dy1—O8104.10 (10)H9A—C9—H9B108.5
O5iii—Dy1—O8137.24 (9)O5—C10—O6125.5 (3)
O1W—Dy1—O8140.83 (11)O5—C10—C9116.8 (3)
O7—Dy1—O847.87 (9)O6—C10—C9117.8 (3)
O4ii—Dy1—O8118.45 (9)O7—C11—O8121.3 (4)
C1—O1—Dy1132.4 (2)O7—C11—C12120.6 (4)
Dy1—O1W—H16A101 (5)O8—C11—C12118.0 (4)
Dy1—O1W—H16B121 (5)O9—C12—C11113.7 (4)
H16A—O1W—H16B108 (4)O9—C12—H12A108.8
C1—O2—Dy1i145.7 (3)C11—C12—H12A108.8
C3—O3—C2115.4 (3)O9—C12—H12B108.8
C8—O4—C9115.7 (3)C11—C12—H12B108.8
C8—O4—Dy1v127.1 (2)H12A—C12—H12B107.7
C9—O4—Dy1v116.5 (2)C14—C13—C15119.3 (5)
C10—O5—Dy1vi137.2 (3)C14—C13—O9115.6 (4)
C10—O6—Dy1v128.9 (2)C15—C13—O9125.0 (5)
C11—O7—Dy1104.3 (3)C13—C14—C15iv120.6 (4)
C11—O8—Dy1i160.3 (3)C13—C14—H14119.7
C11—O8—Dy186.5 (3)C15iv—C14—H14119.7
Dy1i—O8—Dy1106.24 (12)C14iv—C15—C13120.0 (5)
C13—O9—C12118.0 (4)C14iv—C15—H15120.0
O1—C1—O2127.4 (3)C13—C15—H15120.0
O1—C1—C2120.3 (3)H17A—O2W—H17B108 (4)
O2—C1—C2112.2 (3)
O8i—Dy1—O1—C135.1 (4)C2—O3—C3—C5172.1 (4)
O2i—Dy1—O1—C115.4 (4)O3—O3—C3—C40.0 (3)
O6ii—Dy1—O1—C1154.7 (4)C2—O3—C3—C47.1 (6)
O5iii—Dy1—O1—C197.7 (4)O3—C3—C4—C6178.5 (4)
O1W—Dy1—O1—C1126.4 (4)O3—C3—C4—C6178.5 (4)
O7—Dy1—O1—C185.3 (4)C5—C3—C4—C60.6 (6)
O4ii—Dy1—O1—C1153.2 (3)O3—C3—C5—C7178.1 (4)
O8—Dy1—O1—C142.0 (4)O3—C3—C5—C7178.1 (4)
O8i—Dy1—O7—C1114.8 (3)C4—C3—C5—C71.1 (7)
O2i—Dy1—O7—C1171.4 (3)C3—C4—C6—C80.9 (6)
O1—Dy1—O7—C1161.7 (3)C3—C5—C7—C80.1 (7)
O6ii—Dy1—O7—C11131.9 (3)C4—C6—C8—C72.1 (6)
O5iii—Dy1—O7—C11121.0 (3)C4—C6—C8—O4176.8 (4)
O1W—Dy1—O7—C11123.1 (3)C5—C7—C8—C61.6 (6)
O4ii—Dy1—O7—C11163.0 (3)C5—C7—C8—O4177.2 (4)
O8—Dy1—O7—C111.0 (2)C9—O4—C8—C6139.9 (4)
O8i—Dy1—O8—C11164.8 (3)Dy1v—O4—C8—C649.9 (5)
O2i—Dy1—O8—C1187.9 (2)C9—O4—C8—C741.2 (5)
O1—Dy1—O8—C11113.5 (3)Dy1v—O4—C8—C7129.0 (3)
O6ii—Dy1—O8—C1148.6 (2)C8—O4—C9—C10158.0 (3)
O5iii—Dy1—O8—C11107.1 (3)Dy1v—O4—C9—C1030.8 (4)
O1W—Dy1—O8—C11131.1 (3)Dy1vi—O5—C10—O634.7 (7)
O7—Dy1—O8—C111.0 (2)Dy1vi—O5—C10—C9146.8 (3)
O4ii—Dy1—O8—C1116.3 (3)Dy1v—O6—C10—O5177.4 (3)
O8i—Dy1—O8—Dy1i0.0Dy1v—O6—C10—C91.1 (6)
O2i—Dy1—O8—Dy1i76.87 (12)O4—C9—C10—O5160.8 (3)
O1—Dy1—O8—Dy1i81.74 (12)O4—C9—C10—O620.5 (5)
O6ii—Dy1—O8—Dy1i146.60 (11)Dy1—O7—C11—O82.0 (5)
O5iii—Dy1—O8—Dy1i57.68 (18)Dy1—O7—C11—C12177.9 (3)
O1W—Dy1—O8—Dy1i64.1 (2)Dy1i—O8—C11—O7133.2 (8)
O7—Dy1—O8—Dy1i165.76 (18)Dy1—O8—C11—O71.7 (4)
O4ii—Dy1—O8—Dy1i148.44 (9)Dy1i—O8—C11—C1250.8 (10)
Dy1—O1—C1—O20.9 (7)Dy1—O8—C11—C12177.7 (4)
Dy1—O1—C1—C2179.0 (3)C13—O9—C12—C1168.3 (6)
Dy1i—O2—C1—O118.9 (8)O7—C11—C12—O918.6 (6)
Dy1i—O2—C1—C2159.4 (4)O8—C11—C12—O9165.4 (4)
O3—O3—C2—C10.00 (8)C12—O9—C13—C14172.0 (4)
C3—O3—C2—C1174.5 (4)C12—O9—C13—C159.4 (7)
O1—C1—C2—O327.4 (6)C15—C13—C14—C15iv0.4 (8)
O2—C1—C2—O3154.2 (4)O9—C13—C14—C15iv178.4 (4)
C2—O3—C3—O30 (43)C14—C13—C15—C14iv0.4 (8)
O3—O3—C3—C50.00 (12)O9—C13—C15—C14iv178.3 (4)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y, z; (v) x1, y, z1; (vi) x1, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H16A···O6iii0.80 (3)2.11 (5)2.706 (4)131 (6)
O1W—H16B···O2W0.79 (3)1.98 (4)2.755 (6)166 (7)
O2W—H17A···O30.82 (3)2.41 (6)2.952 (5)125 (5)
Symmetry code: (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Dy2(C10H8O6)3(H2O)2]·2H2O
Mr1069.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.080 (2), 16.615 (3), 8.8802 (18)
β (°) 109.32 (3)
V3)1682.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)4.50
Crystal size (mm)0.19 × 0.16 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.437, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
16183, 3838, 3229
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 1.06
No. of reflections3838
No. of parameters256
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.93

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H16A···O6i0.80 (3)2.11 (5)2.706 (4)131 (6)
O1W—H16B···O2W0.79 (3)1.98 (4)2.755 (6)166 (7)
O2W—H17A···O30.82 (3)2.41 (6)2.952 (5)125 (5)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Scientific Research Found­ation for Returned Overseas Chinese Scholars, Chinese Education Ministry (20071108).

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, X.-F. & Han, Z.-B. (2006). Acta Cryst. E62, m1961–m1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMichl, J. (1995). Modular Chemistry. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds