organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)benzaldehyde

aMarine College, Zhejiang Institute of Communications, Hangzhou 311112, People's Republic of China
*Correspondence e-mail: bgao_zjvtit@126.com

(Received 23 May 2008; accepted 26 May 2008; online 7 June 2008)

The title compound, C9H11NO, crystallizes with two independent but essentially identical mol­ecules in the asymmetric unit, which are linked via a C—H⋯π inter­action. In both mol­ecules, the aldehyde and dimethyl­amine groups are essentially coplanar with the attached benzene ring. In the crystal structure, C—H⋯O hydrogen bonds link one type of independent mol­ecules into a chain along the a axis. In addition, the structure is stabilized by ππ stacking inter­actions involving the benzene rings [centroid-to-centroid distance = 3.697 (2) Å].

Related literature

For synthesis, see: Wu & Zhou (2005[Wu, Y. X. & Zhou, J. H. (2005). Yunnan Chem. Technol. 32(3), 20-22.]). For general background, see: Kawski et al. (2007[Kawski, A., Kuklinski, B. & Bojarski, P. (2007). Chem. Phys. Lett. 448, 208-212.]). For related structures, see: Reffner & McCrone (1959[Reffner, J. & McCrone, W. C. (1959). Anal. Chem. 31, 1119-1120.]); Dattagupta & Saha (1973[Dattagupta, J. K. & Saha, N. N. (1973). Acta Cryst. B29, 1228-1233.]); Herbstein et al. (1984[Herbstein, F. H., Kapon, M., Reisner, G. M. & Rubin, G. M. (1984). J. Inclusion Phenom. Macrocycl. Chem. 1, 233-250.]); Mahadevan et al. (1982[Mahadevan, C., Seshasayee, M. & Kothiwal, A. S. (1982). Cryst. Struct. Commun. 11, 1725-1730.]); Habibi et al. (2007[Habibi, M. H., Zendehdel, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. C63, o474-o476.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO

  • Mr = 149.19

  • Monoclinic, P 21 /n

  • a = 10.356 (6) Å

  • b = 7.686 (4) Å

  • c = 20.8434 (13) Å

  • β = 96.808 (13)°

  • V = 1647.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 (2) K

  • 0.27 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.981

  • 9835 measured reflections

  • 2869 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.160

  • S = 1.01

  • 2869 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.96 2.57 3.459 (3) 155
C3—H3⋯Cg1 0.93 2.78 3.593 (3) 146
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-Dimethylaminobenzaldehyde (DMABA) is an important intermediate of dyes and medicine. It belongs to the same family as 4-(dimethylamino)benzonitrile (DMABN) which exhibits dual fluorescence and was a subject of extensive investigations (Kawski et al., 2007). Although the unit-cell parameters of DMABA have been reported (Reffner & McCrone, 1959), to our knowledge there is no report on the crystal structure of DMABA. The crystal structures of DMABA hydrobromide (Dattagupta & Saha, 1973), a 1:1 complex in which DMABA acts as a guest molecule in channels (Herbstein et al., 1984), a tin complex in which DMABA serves as a ligand coordinating through its O atom (Mahadevan et al., 1982), and of a 1:1 cocrystal of DMABA and 6-phenyl-1,3,5-triazine-2,4-diamine (Habibi et al., 2007) have been reported. We report here the crystal structure of the title compound.

The title compound crystallizes with two independent but essentially identical molecules in the asymmetric unit (Fig. 1). In both molecules, the aldehyde and dimethylamino groups are essentially coplanar with the attached benzene ring, similar to those observed in above crystal structures. The mean planes through the non-hydrogen atoms of two independent molecules form a dihedral angle of 76.42 (5)°. The two independent molecules are linked via a C—H···π interaction involving the C3—H3 group and C11–C16 benzene ring (Table 1).

In the crystal structure, C—H···O hydrogen bonds (Table 1) link one type of independent molecules into a chain along the a axis. In addition, the structure is stabilized by stacking interactions between the inversion related C11–C16 benzene rings [centroid–centroid distance is 3.697 (2) Å].

Related literature top

For synthesis, see: Wu & Zhou (2005). For general background, see: Kawski et al. (2007). For related structures, see: Reffner & McCrone (1959); Dattagupta & Saha (1973); Herbstein et al. (1984); Mahadevan et al. (1982); Habibi et al. (2007).

Experimental top

The title compound was prepared according to the literature method (Wu & Zhou, 2005). Crystals suitable for X-ray analysis were obtained by slow evaporation of a isoproanol solution at room temperature (m.p. 343–347 K).

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
4-(Dimethylamino)benzaldehyde top
Crystal data top
C9H11NOF(000) = 640
Mr = 149.19Dx = 1.203 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2869 reflections
a = 10.356 (6) Åθ = 2–25.0°
b = 7.686 (4) ŵ = 0.08 mm1
c = 20.8434 (13) ÅT = 123 K
β = 96.808 (13)°Block, colourless
V = 1647.4 (12) Å30.27 × 0.23 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2869 independent reflections
Radiation source: fine-focus sealed tube1826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.979, Tmax = 0.981k = 99
9835 measured reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0934P)2]
where P = (Fo2 + 2Fc2)/3
2869 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H11NOV = 1647.4 (12) Å3
Mr = 149.19Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.356 (6) ŵ = 0.08 mm1
b = 7.686 (4) ÅT = 123 K
c = 20.8434 (13) Å0.27 × 0.23 × 0.20 mm
β = 96.808 (13)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2869 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1826 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.981Rint = 0.058
9835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2869 reflectionsΔρmin = 0.31 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.26881 (13)0.5751 (2)0.18550 (9)0.1025 (6)
O21.37916 (14)0.2647 (3)0.04689 (9)0.1088 (6)
C90.57238 (17)0.7676 (3)0.21132 (10)0.0742 (6)
H9A0.48150.74980.19760.111*
H9B0.59390.88760.20550.111*
H9C0.59120.73730.25610.111*
C80.57965 (16)0.5577 (3)0.12110 (9)0.0653 (5)
H8A0.48760.57230.12130.098*
H8B0.60170.43700.12710.098*
H8C0.60400.59680.08050.098*
C180.69062 (19)0.0550 (3)0.08262 (11)0.0809 (6)
H18A0.59910.06740.06940.121*
H18B0.71020.09200.12670.121*
H18C0.71510.06470.07890.121*
C170.68913 (18)0.2440 (3)0.01380 (10)0.0776 (6)
H17A0.59780.22670.01200.116*
H17B0.71320.19380.05280.116*
H17C0.70790.36640.01320.116*
C50.78138 (15)0.66025 (19)0.18319 (8)0.0453 (4)
C21.05546 (16)0.6610 (2)0.20311 (9)0.0524 (5)
N10.64859 (12)0.65921 (18)0.17319 (7)0.0542 (4)
C40.85497 (16)0.5535 (2)0.14644 (8)0.0508 (4)
H40.81260.48170.11470.061*
C30.98899 (16)0.5538 (2)0.15671 (8)0.0528 (5)
H31.03560.48100.13220.063*
C60.84982 (16)0.7670 (2)0.23045 (8)0.0529 (5)
H60.80420.83850.25590.063*
C70.98356 (16)0.7666 (2)0.23942 (8)0.0559 (5)
H71.02680.83910.27060.067*
C11.19714 (19)0.6632 (3)0.21338 (11)0.0716 (6)
H11.23580.73990.24440.086*
C140.89524 (16)0.1659 (2)0.05031 (8)0.0500 (4)
N20.76244 (14)0.1612 (2)0.04153 (8)0.0629 (5)
C130.96580 (17)0.2560 (2)0.00770 (8)0.0567 (5)
H130.92170.31140.02810.068*
C111.16899 (17)0.1858 (2)0.07077 (10)0.0583 (5)
C150.96619 (17)0.0836 (2)0.10370 (9)0.0581 (5)
H150.92260.02100.13270.070*
C161.09953 (17)0.0953 (2)0.11309 (9)0.0609 (5)
H161.14460.04100.14880.073*
C121.09922 (18)0.2640 (2)0.01775 (9)0.0612 (5)
H121.14370.32340.01170.073*
C101.3101 (2)0.1939 (3)0.08206 (12)0.0812 (6)
H101.35060.14060.11920.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0548 (8)0.1082 (13)0.1464 (15)0.0050 (8)0.0195 (9)0.0127 (11)
O20.0684 (10)0.1282 (15)0.1327 (15)0.0202 (9)0.0242 (10)0.0258 (12)
C90.0562 (11)0.0765 (14)0.0926 (15)0.0019 (10)0.0201 (11)0.0170 (12)
C80.0548 (10)0.0758 (13)0.0633 (12)0.0026 (9)0.0012 (9)0.0029 (10)
C180.0624 (12)0.0841 (15)0.0979 (16)0.0089 (11)0.0168 (11)0.0110 (13)
C170.0652 (12)0.0777 (15)0.0868 (15)0.0094 (11)0.0045 (11)0.0036 (12)
C50.0497 (10)0.0397 (9)0.0472 (10)0.0017 (7)0.0080 (8)0.0049 (7)
C20.0497 (10)0.0492 (10)0.0580 (11)0.0017 (8)0.0049 (8)0.0099 (8)
N10.0462 (8)0.0562 (9)0.0601 (9)0.0013 (6)0.0062 (7)0.0077 (7)
C40.0564 (10)0.0476 (10)0.0486 (10)0.0012 (8)0.0065 (8)0.0038 (8)
C30.0554 (10)0.0489 (10)0.0562 (11)0.0040 (8)0.0159 (8)0.0011 (8)
C60.0556 (10)0.0487 (10)0.0548 (11)0.0015 (8)0.0084 (8)0.0069 (9)
C70.0593 (11)0.0507 (11)0.0565 (11)0.0054 (8)0.0019 (9)0.0047 (9)
C10.0550 (12)0.0716 (14)0.0876 (15)0.0007 (10)0.0052 (11)0.0053 (11)
C140.0566 (10)0.0416 (9)0.0516 (11)0.0016 (8)0.0052 (8)0.0036 (8)
N20.0534 (9)0.0632 (10)0.0714 (11)0.0016 (7)0.0046 (8)0.0081 (8)
C130.0640 (11)0.0527 (11)0.0532 (11)0.0016 (9)0.0059 (9)0.0043 (9)
C110.0556 (11)0.0541 (11)0.0653 (12)0.0026 (8)0.0073 (9)0.0135 (9)
C150.0649 (12)0.0516 (11)0.0584 (11)0.0029 (9)0.0098 (9)0.0045 (9)
C160.0658 (12)0.0564 (11)0.0576 (11)0.0019 (9)0.0045 (9)0.0019 (9)
C120.0679 (12)0.0585 (12)0.0601 (12)0.0068 (9)0.0189 (9)0.0022 (10)
C100.0660 (13)0.0821 (15)0.0966 (17)0.0098 (11)0.0147 (12)0.0188 (13)
Geometric parameters (Å, º) top
O1—C11.204 (2)C2—C31.389 (2)
O2—C101.212 (3)C2—C11.457 (3)
C9—N11.448 (2)C4—C31.379 (2)
C9—H9A0.96C4—H40.93
C9—H9B0.96C3—H30.93
C9—H9C0.96C6—C71.375 (2)
C8—N11.454 (2)C6—H60.93
C8—H8A0.96C7—H70.93
C8—H8B0.96C1—H10.93
C8—H8C0.96C14—N21.366 (2)
C18—N21.450 (2)C14—C131.399 (2)
C18—H18A0.96C14—C151.409 (2)
C18—H18B0.96C13—C121.374 (3)
C18—H18C0.96C13—H130.93
C17—N21.451 (2)C11—C121.384 (3)
C17—H17A0.96C11—C161.389 (3)
C17—H17B0.96C11—C101.454 (3)
C17—H17C0.96C15—C161.374 (2)
C5—N11.366 (2)C15—H150.93
C5—C41.407 (2)C16—H160.93
C5—C61.407 (2)C12—H120.93
C2—C71.386 (2)C10—H100.93
N1—C9—H9A109.5C4—C3—C2121.02 (16)
N1—C9—H9B109.5C4—C3—H3119.5
H9A—C9—H9B109.5C2—C3—H3119.5
N1—C9—H9C109.5C7—C6—C5120.61 (16)
H9A—C9—H9C109.5C7—C6—H6119.7
H9B—C9—H9C109.5C5—C6—H6119.7
N1—C8—H8A109.5C6—C7—C2121.65 (16)
N1—C8—H8B109.5C6—C7—H7119.2
H8A—C8—H8B109.5C2—C7—H7119.2
N1—C8—H8C109.5O1—C1—C2126.2 (2)
H8A—C8—H8C109.5O1—C1—H1116.9
H8B—C8—H8C109.5C2—C1—H1116.9
N2—C18—H18A109.5N2—C14—C13121.43 (16)
N2—C18—H18B109.5N2—C14—C15121.09 (16)
H18A—C18—H18B109.5C13—C14—C15117.46 (16)
N2—C18—H18C109.5C14—N2—C18120.96 (15)
H18A—C18—H18C109.5C14—N2—C17121.23 (15)
H18B—C18—H18C109.5C18—N2—C17117.37 (15)
N2—C17—H17A109.5C12—C13—C14121.13 (17)
N2—C17—H17B109.5C12—C13—H13119.4
H17A—C17—H17B109.5C14—C13—H13119.4
N2—C17—H17C109.5C12—C11—C16117.64 (17)
H17A—C17—H17C109.5C12—C11—C10122.03 (19)
H17B—C17—H17C109.5C16—C11—C10120.32 (19)
N1—C5—C4120.93 (15)C16—C15—C14120.27 (17)
N1—C5—C6121.63 (15)C16—C15—H15119.9
C4—C5—C6117.44 (15)C14—C15—H15119.9
C7—C2—C3118.28 (16)C15—C16—C11121.97 (17)
C7—C2—C1120.65 (17)C15—C16—H16119.0
C3—C2—C1121.07 (17)C11—C16—H16119.0
C5—N1—C9121.13 (15)C13—C12—C11121.50 (17)
C5—N1—C8120.89 (14)C13—C12—H12119.3
C9—N1—C8117.86 (14)C11—C12—H12119.3
C3—C4—C5120.99 (16)O2—C10—C11125.1 (2)
C3—C4—H4119.5O2—C10—H10117.4
C5—C4—H4119.5C11—C10—H10117.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.962.573.459 (3)155
C3—H3···Cg10.932.783.593 (3)146
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC9H11NO
Mr149.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)10.356 (6), 7.686 (4), 20.8434 (13)
β (°) 96.808 (13)
V3)1647.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.979, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9835, 2869, 1826
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.160, 1.01
No. of reflections2869
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.962.573.459 (3)155
C3—H3···Cg10.932.783.593 (3)146
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank Zhejiang Institute of Communications, People's Republic of China, for financial support.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDattagupta, J. K. & Saha, N. N. (1973). Acta Cryst. B29, 1228–1233.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHabibi, M. H., Zendehdel, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. C63, o474–o476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerbstein, F. H., Kapon, M., Reisner, G. M. & Rubin, G. M. (1984). J. Inclusion Phenom. Macrocycl. Chem. 1, 233–250.  CSD CrossRef CAS Google Scholar
First citationKawski, A., Kuklinski, B. & Bojarski, P. (2007). Chem. Phys. Lett. 448, 208–212.  Web of Science CrossRef CAS Google Scholar
First citationMahadevan, C., Seshasayee, M. & Kothiwal, A. S. (1982). Cryst. Struct. Commun. 11, 1725–1730.  CAS Google Scholar
First citationReffner, J. & McCrone, W. C. (1959). Anal. Chem. 31, 1119–1120.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y. X. & Zhou, J. H. (2005). Yunnan Chem. Technol. 32(3), 20–22.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds