organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of methyl 4-hy­droxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 31 May 2008; accepted 9 June 2008; online 13 June 2008)

A second monoclinic polymorph of methyl 4-hydroxy­benzoate, C8H8O3, is reported. The unit-cell dimensions are different from those of the previously reported monoclinic form [Vujovic & Nassimbeni (2006[Vujovic, D. & Nassimbeni, L. R. (2006). Cryst. Growth Des. 6, 1595-1597.]). Cryst. Growth Des. 6, 1595–1597]. The asymmetric unit contains three crystallographically independent mol­ecules, as observed in the previous form. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions, which link the mol­ecules into a three-dimensional network.

Related literature

For the other monoclinic polymorph of methyl 4-hydroxy­benzoate, see: Lin (1983[Lin, X. T. (1983). Chin. J. Struct. Chem. 2, 213.]); Vujovic & Nassimbeni (2006[Vujovic, D. & Nassimbeni, L. R. (2006). Cryst. Growth Des. 6, 1595-1597.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8O3

  • Mr = 152.14

  • Monoclinic, C c

  • a = 12.9708 (4) Å

  • b = 17.2485 (7) Å

  • c = 10.8428 (3) Å

  • β = 119.260 (1)°

  • V = 2116.32 (12) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100.0 (1) K

  • 0.29 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 25224 measured reflections

  • 3278 independent reflections

  • 2705 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.05

  • 3278 reflections

  • 301 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2Ai 0.82 1.96 2.770 (2) 168
O1B—H1B⋯O3Cii 0.82 1.93 2.729 (2) 167
O1C—H1C⋯O2B 0.82 1.92 2.729 (2) 167
C6A—H6A⋯O2C 0.93 2.58 3.343 (3) 140
C8C—H8C1⋯Cg1i 0.96 2.76 3.539 (3) 139
C8C—H8C3⋯Cg2 0.96 2.70 3.442 (3) 134
C8A—H8A1⋯Cg3iii 0.96 2.68 3.515 (3) 145
C8B—H8B3⋯Cg3iv 0.96 2.78 3.655 (4) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]. Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C1B–C6B and C1C–C6C rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The crystal structure of the title compound at room temperature and at 113 K has been reported previously (Lin, 1983; Vujovic & Nassimbeni, 2006). We report here the structure of a second monoclinic polymorph of the title compound which was elucidated at 100.0 (1) K.

The compound crystallizes in the space group Cc with three independent molecules in the asymmetric unit, similar to the first monoclinic polymorph (Vujovic & Nassimbeni, 2006). However, the cell parameters of the present monoclinic polymorph differ significantly from the previous polymorph [a = 13.006 (3) Å, b = 17.261 (4) Å, c = 12.209 (2) Å and β = 129.12 (3)°]. The corresponding bond lengths and angles of the three independent molecules agree with each other and also with those in the other monoclinic polymorph (Vujovic & Nassimbeni, 2006). Each of the independent molecules are planar. The dihedral angles formed by the C1A-C6A plane with the C1B-C6B and C1C-C6C planes are 2.9 (1)° and 71.2 (1)°, respectively. In the first monoclinic polymorph (Vujovic & Nassimbeni, 2006) these angles are 2.9 (1) and 1.4 (1)°.

In the asymmetric unit, the independent molecules are linked via O—H···O and C—H···O hydrogen bonds. The crystal packing is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds and C—H···π interactions which link the molecules into a three-dimensional network (Fig.2).

Related literature top

For the other monoclinic polymorph of methyl-4-hydroxybenzoate, see: Lin (1983); Vujovic & Nassimbeni (2006). Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C1B–C6B and C1C–C6C rings, respectively.

Experimental top

Methyl 4-hydroxybenzoate was purchased from Aldrich. Single crystals were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically [C-H = 0.93-0.96 Å and O-H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering, 3197 Friedel pairs were merged prior to the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
methyl 4-hydroxybenzoate top
Crystal data top
C8H8O3F(000) = 960
Mr = 152.14Dx = 1.433 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6163 reflections
a = 12.9708 (4) Åθ = 2.3–28.8°
b = 17.2485 (7) ŵ = 0.11 mm1
c = 10.8428 (3) ÅT = 100 K
β = 119.260 (1)°Block, purple
V = 2116.32 (12) Å30.29 × 0.27 × 0.19 mm
Z = 12
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3278 independent reflections
Radiation source: fine-focus sealed tube2705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.969, Tmax = 0.979k = 2424
25224 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.2705P]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C8H8O3V = 2116.32 (12) Å3
Mr = 152.14Z = 12
Monoclinic, CcMo Kα radiation
a = 12.9708 (4) ŵ = 0.11 mm1
b = 17.2485 (7) ÅT = 100 K
c = 10.8428 (3) Å0.29 × 0.27 × 0.19 mm
β = 119.260 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3278 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2705 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.047
25224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3278 reflectionsΔρmin = 0.24 e Å3
301 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.29177 (16)0.36449 (10)0.60077 (19)0.0230 (4)
H1A0.24940.37250.51600.034*
O2A0.66456 (16)0.08828 (9)0.82151 (18)0.0209 (4)
O3A0.57101 (15)0.06897 (9)0.58740 (18)0.0181 (3)
C1A0.3604 (2)0.30138 (13)0.6194 (3)0.0171 (5)
C2A0.4381 (2)0.27923 (15)0.7586 (3)0.0202 (5)
H2A0.44140.30720.83370.024*
C3A0.5102 (2)0.21526 (14)0.7836 (2)0.0182 (5)
H3A0.56210.20050.87620.022*
C4A0.5061 (2)0.17242 (14)0.6716 (3)0.0161 (5)
C5A0.4260 (2)0.19429 (13)0.5327 (3)0.0167 (5)
H5A0.42090.16570.45720.020*
C6A0.3542 (2)0.25858 (14)0.5077 (3)0.0181 (5)
H6A0.30140.27310.41520.022*
C7A0.58804 (19)0.10701 (13)0.7037 (2)0.0151 (5)
C8A0.6476 (2)0.00343 (13)0.6093 (3)0.0198 (5)
H8A10.72800.02090.65120.030*
H8A20.62560.02090.52020.030*
H8A30.64010.03320.67120.030*
O1B1.02411 (15)0.30607 (10)0.65189 (19)0.0217 (4)
H1B1.06780.29960.73690.033*
O2B0.65142 (15)0.58228 (9)0.42254 (18)0.0213 (4)
O3B0.74271 (14)0.60350 (9)0.65507 (17)0.0192 (3)
C1B0.95497 (19)0.36928 (13)0.6311 (2)0.0170 (5)
C2B0.8748 (2)0.38876 (14)0.4925 (2)0.0174 (5)
H2B0.87000.35910.41820.021*
C3B0.8020 (2)0.45249 (13)0.4652 (2)0.0168 (4)
H3B0.74760.46500.37230.020*
C4B0.8090 (2)0.49832 (13)0.5752 (2)0.0149 (4)
C5B0.89218 (19)0.47907 (13)0.7148 (2)0.0166 (4)
H5B0.89880.50960.78900.020*
C6B0.9648 (2)0.41474 (13)0.7432 (3)0.0166 (4)
H6B1.01950.40200.83590.020*
C7B0.72729 (19)0.56418 (13)0.5416 (2)0.0161 (4)
C8B0.6628 (3)0.66766 (15)0.6307 (3)0.0198 (4)
H8B10.67040.70500.56990.030*
H8B20.68200.69160.71920.030*
H8B30.58300.64880.58660.030*
O1C0.53025 (16)0.53612 (10)0.14682 (19)0.0225 (4)
H1C0.57310.54360.23170.034*
O2C0.25159 (14)0.24040 (9)0.16008 (17)0.0198 (3)
O3C0.15783 (15)0.25965 (9)0.07388 (18)0.0219 (4)
C1C0.4608 (2)0.47356 (13)0.1275 (3)0.0176 (5)
C2C0.4694 (2)0.42967 (13)0.2407 (3)0.0178 (5)
H2C0.52320.44360.33320.021*
C3C0.3977 (2)0.36557 (14)0.2147 (3)0.0176 (5)
H3C0.40350.33620.28980.021*
C4C0.3163 (2)0.34464 (13)0.0758 (2)0.0164 (5)
C5C0.3096 (2)0.38827 (14)0.0364 (3)0.0182 (5)
H5C0.25660.37410.12900.022*
C6C0.3811 (2)0.45228 (14)0.0109 (3)0.0194 (5)
H6C0.37610.48120.08610.023*
C7C0.2344 (2)0.27824 (13)0.0442 (2)0.0173 (5)
C8C0.1753 (2)0.17432 (14)0.1380 (3)0.0206 (5)
H8C10.09420.19070.08820.031*
H8C20.19260.15280.22780.031*
H8C30.18850.13570.08350.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0207 (9)0.0252 (9)0.0182 (10)0.0078 (7)0.0058 (8)0.0009 (7)
O2A0.0188 (9)0.0202 (8)0.0173 (9)0.0021 (7)0.0039 (7)0.0009 (7)
O3A0.0153 (8)0.0200 (8)0.0158 (8)0.0043 (6)0.0052 (7)0.0001 (7)
C1A0.0133 (11)0.0180 (11)0.0177 (12)0.0011 (9)0.0058 (10)0.0022 (9)
C2A0.0203 (13)0.0217 (11)0.0146 (12)0.0002 (10)0.0054 (10)0.0029 (10)
C3A0.0169 (12)0.0206 (11)0.0121 (11)0.0006 (9)0.0033 (10)0.0001 (9)
C4A0.0123 (11)0.0175 (11)0.0165 (12)0.0020 (8)0.0054 (9)0.0009 (9)
C5A0.0153 (12)0.0176 (11)0.0160 (12)0.0012 (9)0.0068 (10)0.0019 (9)
C6A0.0127 (11)0.0226 (12)0.0144 (12)0.0001 (9)0.0029 (10)0.0007 (9)
C7A0.0114 (11)0.0176 (11)0.0143 (12)0.0025 (8)0.0047 (10)0.0002 (9)
C8A0.0187 (12)0.0170 (11)0.0226 (13)0.0026 (9)0.0093 (10)0.0004 (10)
O1B0.0213 (9)0.0215 (9)0.0171 (8)0.0063 (7)0.0053 (7)0.0000 (7)
O2B0.0197 (8)0.0221 (8)0.0141 (8)0.0019 (7)0.0020 (7)0.0001 (7)
O3B0.0194 (8)0.0201 (8)0.0147 (8)0.0044 (6)0.0056 (7)0.0007 (7)
C1B0.0141 (10)0.0188 (11)0.0177 (12)0.0030 (8)0.0076 (9)0.0010 (9)
C2B0.0173 (11)0.0212 (11)0.0136 (11)0.0008 (9)0.0074 (9)0.0030 (9)
C3B0.0133 (10)0.0212 (11)0.0139 (10)0.0015 (8)0.0052 (9)0.0003 (9)
C4B0.0135 (10)0.0143 (10)0.0150 (11)0.0005 (8)0.0055 (9)0.0000 (8)
C5B0.0150 (11)0.0195 (11)0.0133 (11)0.0003 (8)0.0053 (9)0.0003 (9)
C6B0.0162 (11)0.0190 (11)0.0125 (10)0.0001 (9)0.0054 (9)0.0010 (9)
C7B0.0150 (10)0.0167 (10)0.0154 (11)0.0017 (8)0.0065 (9)0.0001 (8)
C8B0.0188 (10)0.0197 (10)0.0180 (10)0.0059 (8)0.0068 (8)0.0016 (8)
O1C0.0226 (9)0.0218 (8)0.0195 (9)0.0068 (7)0.0075 (7)0.0003 (7)
O2C0.0203 (8)0.0195 (8)0.0170 (8)0.0045 (6)0.0070 (7)0.0012 (7)
O3C0.0200 (8)0.0206 (8)0.0166 (8)0.0012 (7)0.0024 (7)0.0006 (7)
C1C0.0135 (11)0.0167 (11)0.0213 (13)0.0002 (8)0.0076 (10)0.0019 (9)
C2C0.0168 (11)0.0197 (11)0.0149 (11)0.0004 (8)0.0061 (10)0.0015 (9)
C3C0.0158 (11)0.0211 (11)0.0144 (12)0.0001 (9)0.0062 (9)0.0011 (9)
C4C0.0157 (11)0.0148 (10)0.0179 (12)0.0010 (9)0.0077 (9)0.0010 (9)
C5C0.0186 (11)0.0199 (10)0.0145 (11)0.0013 (9)0.0068 (9)0.0001 (9)
C6C0.0166 (12)0.0213 (12)0.0186 (12)0.0009 (9)0.0074 (10)0.0046 (10)
C7C0.0169 (11)0.0155 (10)0.0187 (12)0.0026 (8)0.0081 (10)0.0008 (9)
C8C0.0179 (13)0.0199 (11)0.0222 (13)0.0019 (9)0.0084 (11)0.0009 (10)
Geometric parameters (Å, º) top
O1A—C1A1.357 (3)C3B—H3B0.93
O1A—H1A0.82C4B—C5B1.403 (3)
O2A—C7A1.218 (3)C4B—C7B1.472 (3)
O3A—C7A1.340 (3)C5B—C6B1.389 (3)
O3A—C8A1.446 (3)C5B—H5B0.93
C1A—C6A1.387 (3)C6B—H6B0.93
C1A—C2A1.397 (4)C8B—H8B10.96
C2A—C3A1.384 (3)C8B—H8B20.96
C2A—H2A0.93C8B—H8B30.96
C3A—C4A1.400 (3)O1C—C1C1.354 (3)
C3A—H3A0.93O1C—H1C0.82
C4A—C5A1.401 (4)O2C—C7C1.334 (3)
C4A—C7A1.471 (3)O2C—C8C1.451 (3)
C5A—C6A1.387 (3)O3C—C7C1.219 (3)
C5A—H5A0.93C1C—C6C1.393 (3)
C6A—H6A0.93C1C—C2C1.399 (3)
C8A—H8A10.96C2C—C3C1.383 (3)
C8A—H8A20.96C2C—H2C0.93
C8A—H8A30.96C3C—C4C1.400 (3)
O1B—C1B1.359 (3)C3C—H3C0.93
O1B—H1B0.82C4C—C5C1.398 (3)
O2B—C7B1.221 (3)C4C—C7C1.484 (3)
O3B—C7B1.331 (3)C5C—C6C1.380 (3)
O3B—C8B1.449 (3)C5C—H5C0.93
C1B—C2B1.388 (3)C6C—H6C0.93
C1B—C6B1.399 (3)C8C—H8C10.96
C2B—C3B1.384 (3)C8C—H8C20.96
C2B—H2B0.93C8C—H8C30.96
C3B—C4B1.396 (3)
C1A—O1A—H1A109.5C6B—C5B—H5B119.7
C7A—O3A—C8A116.4 (2)C4B—C5B—H5B119.7
O1A—C1A—C6A122.9 (2)C5B—C6B—C1B119.4 (2)
O1A—C1A—C2A117.1 (2)C5B—C6B—H6B120.3
C6A—C1A—C2A120.1 (2)C1B—C6B—H6B120.3
C3A—C2A—C1A119.4 (2)O2B—C7B—O3B121.7 (2)
C3A—C2A—H2A120.3O2B—C7B—C4B124.7 (2)
C1A—C2A—H2A120.3O3B—C7B—C4B113.54 (19)
C2A—C3A—C4A121.0 (2)O3B—C8B—H8B1109.5
C2A—C3A—H3A119.5O3B—C8B—H8B2109.5
C4A—C3A—H3A119.5H8B1—C8B—H8B2109.5
C3A—C4A—C5A119.0 (2)O3B—C8B—H8B3109.5
C3A—C4A—C7A118.9 (2)H8B1—C8B—H8B3109.5
C5A—C4A—C7A122.1 (2)H8B2—C8B—H8B3109.5
C6A—C5A—C4A120.0 (2)C1C—O1C—H1C109.5
C6A—C5A—H5A120.0C7C—O2C—C8C116.3 (2)
C4A—C5A—H5A120.0O1C—C1C—C6C117.6 (2)
C5A—C6A—C1A120.5 (2)O1C—C1C—C2C122.3 (2)
C5A—C6A—H6A119.7C6C—C1C—C2C120.1 (2)
C1A—C6A—H6A119.7C3C—C2C—C1C119.8 (2)
O2A—C7A—O3A122.2 (2)C3C—C2C—H2C120.1
O2A—C7A—C4A125.2 (2)C1C—C2C—H2C120.1
O3A—C7A—C4A112.7 (2)C2C—C3C—C4C120.3 (2)
O3A—C8A—H8A1109.5C2C—C3C—H3C119.8
O3A—C8A—H8A2109.5C4C—C3C—H3C119.8
H8A1—C8A—H8A2109.5C5C—C4C—C3C119.4 (2)
O3A—C8A—H8A3109.5C5C—C4C—C7C118.8 (2)
H8A1—C8A—H8A3109.5C3C—C4C—C7C121.8 (2)
H8A2—C8A—H8A3109.5C6C—C5C—C4C120.4 (2)
C1B—O1B—H1B109.5C6C—C5C—H5C119.8
C7B—O3B—C8B116.7 (2)C4C—C5C—H5C119.8
O1B—C1B—C2B117.3 (2)C5C—C6C—C1C119.9 (2)
O1B—C1B—C6B122.2 (2)C5C—C6C—H6C120.0
C2B—C1B—C6B120.5 (2)C1C—C6C—H6C120.0
C3B—C2B—C1B119.7 (2)O3C—C7C—O2C122.4 (2)
C3B—C2B—H2B120.1O3C—C7C—C4C124.7 (2)
C1B—C2B—H2B120.1O2C—C7C—C4C112.8 (2)
C2B—C3B—C4B121.0 (2)O2C—C8C—H8C1109.5
C2B—C3B—H3B119.5O2C—C8C—H8C2109.5
C4B—C3B—H3B119.5H8C1—C8C—H8C2109.5
C3B—C4B—C5B118.8 (2)O2C—C8C—H8C3109.5
C3B—C4B—C7B119.1 (2)H8C1—C8C—H8C3109.5
C5B—C4B—C7B122.05 (19)H8C2—C8C—H8C3109.5
C6B—C5B—C4B120.6 (2)
O1A—C1A—C2A—C3A180.0 (2)O1B—C1B—C6B—C5B179.4 (2)
C6A—C1A—C2A—C3A1.2 (4)C2B—C1B—C6B—C5B1.0 (3)
C1A—C2A—C3A—C4A0.1 (4)C8B—O3B—C7B—O2B1.6 (3)
C2A—C3A—C4A—C5A1.2 (4)C8B—O3B—C7B—C4B178.0 (2)
C2A—C3A—C4A—C7A177.3 (2)C3B—C4B—C7B—O2B0.5 (3)
C3A—C4A—C5A—C6A1.5 (3)C5B—C4B—C7B—O2B178.1 (2)
C7A—C4A—C5A—C6A177.0 (2)C3B—C4B—C7B—O3B179.9 (2)
C4A—C5A—C6A—C1A0.4 (3)C5B—C4B—C7B—O3B1.5 (3)
O1A—C1A—C6A—C5A179.7 (2)O1C—C1C—C2C—C3C178.9 (2)
C2A—C1A—C6A—C5A1.0 (3)C6C—C1C—C2C—C3C0.7 (3)
C8A—O3A—C7A—O2A0.8 (3)C1C—C2C—C3C—C4C0.3 (3)
C8A—O3A—C7A—C4A179.72 (19)C2C—C3C—C4C—C5C1.1 (3)
C3A—C4A—C7A—O2A3.4 (4)C2C—C3C—C4C—C7C177.4 (2)
C5A—C4A—C7A—O2A175.1 (2)C3C—C4C—C5C—C6C1.1 (3)
C3A—C4A—C7A—O3A177.1 (2)C7C—C4C—C5C—C6C177.5 (2)
C5A—C4A—C7A—O3A4.3 (3)C4C—C5C—C6C—C1C0.2 (3)
O1B—C1B—C2B—C3B179.9 (2)O1C—C1C—C6C—C5C179.0 (2)
C6B—C1B—C2B—C3B1.6 (3)C2C—C1C—C6C—C5C0.7 (3)
C1B—C2B—C3B—C4B0.8 (4)C8C—O2C—C7C—O3C1.2 (3)
C2B—C3B—C4B—C5B0.5 (3)C8C—O2C—C7C—C4C179.69 (18)
C2B—C3B—C4B—C7B178.1 (2)C5C—C4C—C7C—O3C2.4 (3)
C3B—C4B—C5B—C6B1.2 (3)C3C—C4C—C7C—O3C176.2 (2)
C7B—C4B—C5B—C6B177.5 (2)C5C—C4C—C7C—O2C178.6 (2)
C4B—C5B—C6B—C1B0.4 (3)C3C—C4C—C7C—O2C2.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2Ai0.821.962.770 (2)168
O1B—H1B···O3Cii0.821.932.729 (2)167
O1C—H1C···O2B0.821.922.729 (2)167
C6A—H6A···O2C0.932.583.343 (3)140
C8C—H8C1···Cg1i0.962.763.539 (3)139
C8C—H8C3···Cg20.962.703.442 (3)134
C8A—H8A1···Cg3iii0.962.683.515 (3)145
C8B—H8B3···Cg3iv0.962.783.655 (4)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H8O3
Mr152.14
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)12.9708 (4), 17.2485 (7), 10.8428 (3)
β (°) 119.260 (1)
V3)2116.32 (12)
Z12
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
25224, 3278, 2705
Rint0.047
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.06
No. of reflections3278
No. of parameters301
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2Ai0.821.962.770 (2)168
O1B—H1B···O3Cii0.821.932.729 (2)167
O1C—H1C···O2B0.821.922.729 (2)167
C6A—H6A···O2C0.932.583.343 (3)140
C8C—H8C1···Cg1i0.962.763.539 (3)139
C8C—H8C3···Cg20.962.703.442 (3)134
C8A—H8A1···Cg3iii0.962.683.515 (3)145
C8B—H8B3···Cg3iv0.962.783.655 (4)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y1/2, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLin, X. T. (1983). Chin. J. Struct. Chem. 2, 213.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVujovic, D. & Nassimbeni, L. R. (2006). Cryst. Growth Des. 6, 1595–1597.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds