metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m971-m972

Poly[tris­­(μ4-5-amino­isophthalato)di­aqua­dilanthanum(III)]

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 31 May 2008; accepted 22 June 2008; online 28 June 2008)

The title compound, [La2(C8H5NO4)3(H2O)2]n, is a three-dimensional network coordination polymer in which each LaIII ion is nine-coordinated by eight carboxyl­ate O atoms from six 5-amino­isophthalate ligands and one O atom from a water mol­ecule. One organic ligand lies on a twofold rotation axis. O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For related literature on metal carboxyl­ate complexes, see: Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wochter, J., OKeeffe, M. & Yaghi, O. (2002). Mater. Sci. 295, 469-472.]); Tao et al. (2000[Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043-2044.]); Zheng et al. (2004[Zheng, S. L., Yang, J. H., Yu, X. L., Chen, X. M. & Wong, W. T. (2004). Inorg. Chem. 43, 830-838.]). For related literature on aromatic polycarboxylic acids, see: Eddaoudi et al. (2000[Eddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391-1397.]); Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]); Lo et al. (2000[Lo, S. M. F., Chui, S. S. Y., Shek, L. Y., Lin, Z., Zhang, X. X., Wen, G. H. & Williams, I. D. (2000). J. Am. Chem. Soc. 122, 6293-6294.]); Qu et al. (2005[Qu, Y. L., Ke, Y. X., Lu, S. M., Fan, R., Pan, G. Q. & Li, J. M. (2005). J. Mol. Struct. 734, 7-13.]); Rosi et al. (2002[Rosi, N. L., Eddaoudi, M., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2002). Angew. Chem. 41, 284-287.]). For the coordination modes of lanthanides, see: Bond et al. (2000[Bond, D. L., Clark, D. L., Donohoe, R. J., Gordon, J. C., Gordon, P. L., Keogh, D. W., Scott, B. L., Tait, C. D. & Watkin, J. G. (2000). Inorg. Chem. 39, 3934-3937.]); Saleh et al. (1998[Saleh, M. I., Salhin, A., Saad, B., Zain, S. M., Rahman, N. A. & Ariffin, Z. (1998). J. Mol. Struct. 448, 63-68.]). For bond length and angle data, see: Glunnlaugson et al. (2004[Glunnlaugson, T., Leonard, J. P., Mulready, S. & Nieuwenhuyzen, M. (2004). Tetrahedron, 60, 105-113.]); Zheng et al. (2003[Zheng, X.-J. & Jin, L.-P. (2003). Polyhedron, 22, 2617-2624.]); Drew et al. (2000[Drew, M. G. B., Hudson, M. J., Iveson, P. B., Madic, C. & Russel, M. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2711-2720.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C8H5NO4)3(H2O)2]

  • Mr = 851.24

  • Orthorhombic, P b c n

  • a = 12.2525 (3) Å

  • b = 8.0521 (2) Å

  • c = 25.6820 (6) Å

  • V = 2533.74 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 100.0 (1) K

  • 0.36 × 0.31 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.313, Tmax = 0.822

  • 68438 measured reflections

  • 7718 independent reflections

  • 6892 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.074

  • S = 1.16

  • 7718 reflections

  • 208 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1OW⋯O5i 0.84 2.02 2.8354 (16) 164
O1W—H2OW⋯N1ii 0.84 2.02 2.817 (2) 157
N1—H1N1⋯O4iii 0.90 (1) 2.28 (2) 3.0929 (17) 150 (3)
N2—H1N2⋯O4iv 0.84 (1) 2.60 (2) 3.1953 (12) 129 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x+1, y, z; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent years, interest has been focused on metal carboxylate complexes due to their potential applications as material for molecular recognition, ion exchange, catalysis and luminescence (Eddaoudi et al., 2002; Tao et al., 2000; Zheng et al., 2004). Aromatic polycarboxylic acids such as 1,4-benzenedicarboxylic acid and 1,3-benzenedicarboxylic acid are used extensively in the synthesis of this type of coordination polymer (Eddaoudi et al., 2000; Li et al., 1999; Lo et al., 2000; Qu et al., 2005; Rosi et al., 2002).

Aminoisophthalic acid is a potential multidentate ligand with trifunctional group that may generate structures of higher dimensions containing networks or channels. It's two carboxylic groups may be completely or partially deprotonated and thus results in versatile coordination modes. Meanwhile, lanthanide ions are known for their ability to display diverse coordination modes and high coordination number (Bond et al., 2000; Saleh et al., 1998). In addition to that, hard acid lanthanide ions prefer to coordinate with carboxyl groups belonging to hard base. In this paper, we report the crystal structure of a polymeric coordination complex formed from hydrothermal reaction between trivalent lanthanum ion and aminoisophthalic acid.

In the crystal structure of the title compound, each LaIII ion is nine-coordinated by eight carboxylate O atoms from six 5-aminoisophthalate ligands and one O atom from a water molecule. The La—O bond lengths [2.4076 (11) Å-2.8015 (12) Å] and bond angles around the LaIII ion agree well with the values reported for related lanthanum complexes (Glunnlaugson et al., 2004; Zheng et al., 2003; Drew et al., 2000).

The O—H···O, O—H···N and N—H···O hydrogen bonds are observed in the crystal structure (Fig. 2).

Related literature top

For related literature on metal carboxylate complexes, see: Eddaoudi et al. (2002); Tao et al. (2000); Zheng et al. (2004). For related literature on aromatic polycarboxylic acids, see: Eddaoudi et al. (2000); Li et al. (1999); Lo et al. (2000); Qu et al. (2005); Rosi et al. (2002). For the coordination modes of lanthanides, see: Bond et al. (2000); Saleh et al. (1998). For bond length and angle data, see: Glunnlaugson et al. (2004); Zheng et al. (2003); Drew et al. (2000).

Experimental top

A mixture of 5-aminoisophthalic acid (0.273 g, 1.5 mmol), sodium hydroxide (0.120 g, 3 mmol) and distilled water (20 ml) was heated till boiling. The solution was left to cool and then poured into a 40 ml Teflon tube with La(NO3).6H2O (0.433 g, 1.0 mmol). The Teflon tube was sealed and heated at 403 K for 60 h, and then allowed to cool to room temperature. Pale clear-pink crystals obtained were filtered, washed with distilled water and left to dry in air (yield: 52% based on La).

Refinement top

H atoms of the water molecule were located initially in a difference Fourier map and then constrained to ride on the parent O atom, with O-H = 0.84 Å and Uiso(H) = 0.018 Å2. The amino H atoms were located in a difference map and were refined with a N-H distance restraint of 0.85 (1) or 0.90 (1) Å. The remaining H atoms were positioned geometrically [C-H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The highest residual density peak is located 0.61 Å from La1 and the deepest hole is located 0.57 Å from La1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Part of the three-dimensional coordination polymer, showing the coordination environment of the LaIII ion. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (A) 1/2-x, -1/2+y, z; (B) 1/2+x, 1/2-y, -z; (C) -x, 1-y, -z.]
[Figure 2] Fig. 2. A view of part of the coordination polymer of the title compound. Hydrogen bonds are shown as dashed lines.
Poly[tris(µ4-5-aminoisophthalato)diaquadilanthanum(III)] top
Crystal data top
[La2(C8H5NO4)3(H2O)2]F(000) = 1640
Mr = 851.24Dx = 2.221 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9864 reflections
a = 12.2525 (3) Åθ = 2.3–45.2°
b = 8.0521 (2) ŵ = 3.41 mm1
c = 25.6820 (6) ÅT = 100 K
V = 2533.74 (11) Å3Plate, pink
Z = 40.36 × 0.31 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7718 independent reflections
Radiation source: fine-focus sealed tube6892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 40.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2221
Tmin = 0.313, Tmax = 0.822k = 1414
68438 measured reflectionsl = 4544
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0368P)2 + 1.5159P]
where P = (Fo2 + 2Fc2)/3
7718 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 1.54 e Å3
5 restraintsΔρmin = 1.24 e Å3
Crystal data top
[La2(C8H5NO4)3(H2O)2]V = 2533.74 (11) Å3
Mr = 851.24Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 12.2525 (3) ŵ = 3.41 mm1
b = 8.0521 (2) ÅT = 100 K
c = 25.6820 (6) Å0.36 × 0.31 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6892 reflections with I > 2σ(I)
Tmin = 0.313, Tmax = 0.822Rint = 0.040
68438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0255 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 1.54 e Å3
7718 reflectionsΔρmin = 1.24 e Å3
208 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.305761 (5)0.465168 (9)0.094499 (3)0.00725 (3)
O10.11915 (9)0.55822 (16)0.09118 (5)0.01427 (19)
O20.29520 (8)0.76545 (14)0.14936 (5)0.01260 (17)
O30.36750 (11)0.54193 (13)0.18450 (5)0.0161 (2)
O40.03641 (8)0.77482 (13)0.12749 (5)0.01283 (17)
O50.11694 (8)0.16092 (13)0.01083 (4)0.01261 (17)
O60.27525 (9)0.27524 (13)0.03252 (4)0.01193 (16)
O1W0.48255 (8)0.60804 (14)0.07751 (5)0.01474 (18)
H1OW0.51150.63130.04880.018*
H2OW0.53090.61450.10090.018*
N10.35537 (11)0.53130 (17)0.15151 (6)0.0164 (2)
N20.50001.2332 (3)0.25000.0265 (5)
C10.16182 (11)0.57505 (17)0.13169 (6)0.0116 (2)
H10.15440.64210.16100.014*
C20.26282 (11)0.50210 (18)0.12013 (6)0.0117 (2)
C30.27434 (10)0.40880 (17)0.07446 (6)0.0112 (2)
H30.34260.36920.06470.013*
C40.18356 (10)0.37549 (16)0.04371 (6)0.0102 (2)
C50.08197 (11)0.44158 (16)0.05646 (6)0.0108 (2)
H50.02090.41550.03650.013*
C60.07239 (11)0.54677 (16)0.09915 (6)0.0100 (2)
C70.03462 (10)0.63224 (16)0.10726 (6)0.01037 (19)
C80.35819 (11)0.69799 (17)0.18250 (6)0.0111 (2)
C90.42765 (11)0.80015 (16)0.21813 (6)0.0114 (2)
C100.42555 (12)0.97334 (16)0.21897 (6)0.0123 (2)
H100.37471.03030.19890.015*
C110.50001.0623 (3)0.25000.0135 (3)
C120.50000.7136 (2)0.25000.0124 (3)
H120.50000.59810.25000.015*
C130.19263 (10)0.26435 (17)0.00240 (6)0.0099 (2)
H1N10.399 (2)0.443 (2)0.1564 (11)0.023 (7)*
H1N20.5414 (19)1.281 (3)0.2714 (9)0.028 (7)*
H2N10.342 (2)0.571 (3)0.1839 (6)0.018 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00651 (4)0.00736 (4)0.00789 (4)0.00013 (2)0.00015 (2)0.00035 (2)
O10.0076 (4)0.0187 (5)0.0165 (5)0.0020 (3)0.0003 (3)0.0007 (4)
O20.0128 (4)0.0130 (4)0.0120 (5)0.0016 (3)0.0042 (3)0.0008 (3)
O30.0223 (5)0.0101 (4)0.0160 (5)0.0014 (3)0.0076 (4)0.0013 (3)
O40.0122 (4)0.0111 (4)0.0153 (5)0.0026 (3)0.0004 (3)0.0009 (3)
O50.0127 (4)0.0129 (4)0.0122 (5)0.0030 (3)0.0022 (3)0.0024 (3)
O60.0107 (4)0.0133 (4)0.0118 (5)0.0004 (3)0.0025 (3)0.0001 (3)
O1W0.0108 (4)0.0170 (5)0.0163 (5)0.0029 (3)0.0008 (3)0.0023 (4)
N10.0108 (5)0.0231 (6)0.0153 (6)0.0028 (4)0.0031 (4)0.0054 (4)
N20.0457 (13)0.0095 (7)0.0244 (11)0.0000.0211 (10)0.000
C10.0093 (5)0.0122 (5)0.0133 (6)0.0010 (3)0.0002 (4)0.0023 (4)
C20.0098 (5)0.0130 (5)0.0123 (6)0.0006 (4)0.0004 (4)0.0012 (4)
C30.0098 (4)0.0119 (5)0.0120 (6)0.0009 (3)0.0003 (4)0.0010 (4)
C40.0109 (5)0.0092 (5)0.0104 (6)0.0003 (3)0.0007 (4)0.0009 (4)
C50.0102 (4)0.0107 (5)0.0114 (6)0.0003 (3)0.0001 (4)0.0004 (4)
C60.0086 (5)0.0095 (5)0.0120 (6)0.0004 (3)0.0008 (4)0.0002 (4)
C70.0088 (4)0.0114 (5)0.0109 (5)0.0007 (3)0.0011 (4)0.0010 (4)
C80.0119 (5)0.0113 (5)0.0101 (5)0.0013 (3)0.0021 (4)0.0015 (4)
C90.0133 (5)0.0108 (5)0.0102 (5)0.0003 (3)0.0032 (4)0.0008 (4)
C100.0164 (5)0.0093 (5)0.0113 (6)0.0018 (3)0.0036 (4)0.0004 (4)
C110.0190 (8)0.0098 (7)0.0116 (8)0.0000.0038 (6)0.000
C120.0144 (7)0.0098 (7)0.0129 (8)0.0000.0046 (6)0.000
C130.0106 (5)0.0100 (5)0.0093 (5)0.0003 (3)0.0004 (4)0.0001 (4)
Geometric parameters (Å, º) top
La1—O12.4076 (11)N1—H2N10.91 (1)
La1—O2i2.4701 (11)N2—C111.377 (3)
La1—O1W2.4912 (10)N2—H1N20.84 (1)
La1—O32.5093 (12)C1—C61.397 (2)
La1—O5ii2.5585 (11)C1—C21.4016 (19)
La1—O4i2.6089 (10)C1—H10.93
La1—O6iii2.6538 (11)C2—C31.400 (2)
La1—O6ii2.6955 (11)C3—C41.3902 (19)
La1—O22.8015 (12)C3—H30.93
O1—C71.2643 (18)C4—C51.3927 (18)
O2—C81.2708 (17)C4—C131.489 (2)
O2—La1iv2.4701 (11)C5—C61.390 (2)
O3—C81.2628 (17)C5—H50.93
O4—C71.2604 (17)C6—C71.4953 (18)
O4—La1iv2.6089 (10)C8—C91.4961 (19)
O5—C131.2651 (17)C9—C121.3933 (17)
O5—La1v2.5585 (11)C9—C101.3949 (19)
O6—C131.2771 (17)C10—C111.4071 (18)
O6—La1iii2.6538 (11)C10—H100.93
O6—La1v2.6955 (11)C11—C10vi1.4071 (18)
O1W—H1OW0.84C12—C9vi1.3933 (17)
O1W—H2OW0.84C12—H120.93
N1—C21.411 (2)C13—La1v3.0017 (14)
N1—H1N10.90 (1)
O1—La1—O2i75.36 (4)C2—N1—H1N1115.5 (19)
O1—La1—O1W132.52 (4)C2—N1—H2N1116.3 (18)
O2i—La1—O1W146.72 (4)H1N1—N1—H2N1105 (2)
O1—La1—O3104.02 (4)C11—N2—H1N2117 (2)
O2i—La1—O377.64 (4)C6—C1—C2119.84 (13)
O1W—La1—O377.61 (4)C6—C1—H1120.1
O1—La1—O5ii116.44 (4)C2—C1—H1120.1
O2i—La1—O5ii113.96 (4)C3—C2—C1119.43 (12)
O1W—La1—O5ii73.40 (4)C3—C2—N1119.13 (12)
O3—La1—O5ii139.45 (4)C1—C2—N1121.25 (13)
O1—La1—O4i153.93 (4)C4—C3—C2119.92 (12)
O2i—La1—O4i78.67 (3)C4—C3—H3120.0
O1W—La1—O4i71.56 (4)C2—C3—H3120.0
O3—La1—O4i67.80 (4)C3—C4—C5120.51 (13)
O5ii—La1—O4i76.42 (4)C3—C4—C13120.55 (11)
O1—La1—O6iii66.41 (4)C5—C4—C13118.91 (12)
O2i—La1—O6iii141.66 (3)C6—C5—C4119.58 (13)
O1W—La1—O6iii69.74 (4)C6—C5—H5120.2
O3—La1—O6iii113.64 (3)C4—C5—H5120.2
O5ii—La1—O6iii82.01 (4)C5—C6—C1120.32 (12)
O4i—La1—O6iii139.64 (3)C5—C6—C7117.66 (12)
O1—La1—O6ii81.54 (4)C1—C6—C7121.98 (12)
O2i—La1—O6ii71.63 (4)O4—C7—O1123.35 (13)
O1W—La1—O6ii123.26 (4)O4—C7—C6119.47 (12)
O3—La1—O6ii146.29 (3)O1—C7—C6117.12 (12)
O5ii—La1—O6ii49.86 (3)O3—C8—O2120.49 (13)
O4i—La1—O6ii92.45 (3)O3—C8—C9118.09 (12)
O6iii—La1—O6ii99.18 (3)O2—C8—C9121.33 (12)
O1—La1—O272.86 (4)O3—C8—La155.20 (8)
O2i—La1—O2104.59 (4)O2—C8—La168.49 (8)
O1W—La1—O274.31 (4)C9—C8—La1157.57 (9)
O3—La1—O248.55 (3)C12—C9—C10120.17 (13)
O5ii—La1—O2141.45 (3)C12—C9—C8116.50 (12)
O4i—La1—O2112.21 (3)C10—C9—C8123.28 (13)
O6iii—La1—O267.38 (3)C9—C10—C11120.37 (14)
O6ii—La1—O2154.13 (3)C9—C10—H10119.8
C7—O1—La1155.94 (10)C11—C10—H10119.8
C8—O2—La1iv164.67 (10)N2—C11—C10120.59 (9)
C8—O2—La186.55 (8)N2—C11—C10vi120.59 (9)
La1iv—O2—La1107.35 (4)C10—C11—C10vi118.81 (18)
C8—O3—La1100.39 (9)C9vi—C12—C9119.99 (18)
C7—O4—La1iv114.46 (9)C9vi—C12—H12120.0
C13—O5—La1v97.67 (9)C9—C12—H12120.0
C13—O6—La1iii121.94 (9)O5—C13—O6121.52 (13)
C13—O6—La1v90.94 (8)O5—C13—C4118.50 (12)
La1iii—O6—La1v105.27 (4)O6—C13—C4119.99 (12)
La1—O1W—H1OW128.6O5—C13—La1v57.64 (7)
La1—O1W—H2OW120.9O6—C13—La1v63.88 (8)
H1OW—O1W—H2OW108.3C4—C13—La1v175.99 (9)
O2i—La1—O1—C781.4 (3)La1—O3—C8—O221.93 (16)
O1W—La1—O1—C777.4 (3)La1—O3—C8—C9154.83 (11)
O3—La1—O1—C78.5 (3)La1iv—O2—C8—O3174.7 (3)
O5ii—La1—O1—C7168.8 (2)La1—O2—C8—O319.25 (14)
O4i—La1—O1—C776.4 (3)La1iv—O2—C8—C91.9 (5)
O6iii—La1—O1—C7101.5 (3)La1—O2—C8—C9157.41 (13)
O6ii—La1—O1—C7154.5 (3)La1iv—O2—C8—La1155.5 (4)
O2—La1—O1—C729.2 (3)O1—La1—C8—O3120.56 (10)
C13ii—La1—O1—C7172.0 (3)O2i—La1—C8—O345.09 (10)
C8—La1—O1—C713.0 (3)O1W—La1—C8—O3104.47 (10)
O1—La1—O2—C8138.62 (9)O5ii—La1—C8—O397.27 (11)
O2i—La1—O2—C869.33 (7)O4i—La1—C8—O333.35 (10)
O1W—La1—O2—C876.18 (9)O6iii—La1—C8—O3173.07 (10)
O3—La1—O2—C810.99 (8)O6ii—La1—C8—O358.48 (19)
O5ii—La1—O2—C8110.23 (9)O2—La1—C8—O3159.76 (15)
O4i—La1—O2—C814.18 (9)C13ii—La1—C8—O382.2 (2)
O6iii—La1—O2—C8150.35 (9)O1—La1—C8—O239.20 (9)
O6ii—La1—O2—C8147.23 (9)O2i—La1—C8—O2114.68 (7)
C13ii—La1—O2—C8148.28 (9)O1W—La1—C8—O295.77 (9)
O1—La1—O2—La1iv47.98 (4)O3—La1—C8—O2159.76 (15)
O2i—La1—O2—La1iv117.27 (6)O5ii—La1—C8—O2102.97 (9)
O1W—La1—O2—La1iv97.22 (5)O4i—La1—C8—O2166.88 (8)
O3—La1—O2—La1iv175.61 (7)O6iii—La1—C8—O227.17 (8)
O5ii—La1—O2—La1iv63.17 (6)O6ii—La1—C8—O2101.28 (16)
O4i—La1—O2—La1iv159.22 (4)C13ii—La1—C8—O2118.03 (17)
O6iii—La1—O2—La1iv23.04 (4)O1—La1—C8—C9159.9 (3)
O6ii—La1—O2—La1iv39.37 (10)O2i—La1—C8—C9124.7 (3)
C13ii—La1—O2—La1iv25.12 (10)O1W—La1—C8—C924.9 (2)
C8—La1—O2—La1iv173.40 (11)O3—La1—C8—C979.6 (3)
O1—La1—O3—C862.50 (10)O5ii—La1—C8—C917.7 (3)
O2i—La1—O3—C8133.75 (10)O4i—La1—C8—C946.2 (3)
O1W—La1—O3—C868.68 (10)O6iii—La1—C8—C993.5 (3)
O5ii—La1—O3—C8113.71 (10)O6ii—La1—C8—C9138.1 (2)
O4i—La1—O3—C8143.60 (11)O2—La1—C8—C9120.7 (3)
O6iii—La1—O3—C87.57 (11)C13ii—La1—C8—C92.6 (4)
O6ii—La1—O3—C8158.30 (8)O3—C8—C9—C121.7 (2)
O2—La1—O3—C811.23 (8)O2—C8—C9—C12175.02 (12)
C13ii—La1—O3—C8152.93 (9)La1—C8—C9—C1264.5 (3)
C6—C1—C2—C33.4 (2)O3—C8—C9—C10179.15 (15)
C6—C1—C2—N1178.49 (14)O2—C8—C9—C102.4 (2)
C1—C2—C3—C46.3 (2)La1—C8—C9—C10112.9 (2)
N1—C2—C3—C4178.49 (14)C12—C9—C10—C113.2 (2)
C2—C3—C4—C53.4 (2)C8—C9—C10—C11174.17 (12)
C2—C3—C4—C13174.65 (13)C9—C10—C11—N2178.42 (11)
C3—C4—C5—C62.5 (2)C9—C10—C11—C10vi1.58 (11)
C13—C4—C5—C6179.43 (13)C10—C9—C12—C9vi1.58 (11)
C4—C5—C6—C15.4 (2)C8—C9—C12—C9vi175.93 (14)
C4—C5—C6—C7172.14 (13)La1v—O5—C13—O60.96 (15)
C2—C1—C6—C52.4 (2)La1v—O5—C13—C4178.75 (10)
C2—C1—C6—C7174.99 (13)La1iii—O6—C13—O5109.60 (13)
La1iv—O4—C7—O129.15 (18)La1v—O6—C13—O50.90 (14)
La1iv—O4—C7—C6147.91 (10)La1iii—O6—C13—C470.10 (15)
La1—O1—C7—O442.8 (3)La1v—O6—C13—C4178.80 (11)
La1—O1—C7—C6140.0 (2)La1iii—O6—C13—La1v108.70 (8)
C5—C6—C7—O4147.88 (14)C3—C4—C13—O5138.65 (14)
C1—C6—C7—O429.6 (2)C5—C4—C13—O539.5 (2)
C5—C6—C7—O129.36 (19)C3—C4—C13—O641.6 (2)
C1—C6—C7—O1153.14 (14)C5—C4—C13—O6140.26 (14)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z; (vi) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O5iv0.842.022.8354 (16)164
O1W—H2OW···N1vii0.842.022.817 (2)157
N1—H1N1···O4viii0.90 (1)2.28 (2)3.0929 (17)150 (3)
N2—H1N2···O4ix0.84 (1)2.60 (2)3.1953 (12)129 (2)
Symmetry codes: (iv) x+1/2, y+1/2, z; (vii) x+1, y, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[La2(C8H5NO4)3(H2O)2]
Mr851.24
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)12.2525 (3), 8.0521 (2), 25.6820 (6)
V3)2533.74 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.36 × 0.31 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.313, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
68438, 7718, 6892
Rint0.040
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.074, 1.16
No. of reflections7718
No. of parameters208
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.54, 1.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O5i0.842.022.8354 (16)164
O1W—H2OW···N1ii0.842.022.817 (2)157
N1—H1N1···O4iii0.90 (1)2.28 (2)3.0929 (17)150 (3)
N2—H1N2···O4iv0.84 (1)2.60 (2)3.1953 (12)129 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral fellowship.

References

First citationBond, D. L., Clark, D. L., Donohoe, R. J., Gordon, J. C., Gordon, P. L., Keogh, D. W., Scott, B. L., Tait, C. D. & Watkin, J. G. (2000). Inorg. Chem. 39, 3934–3937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. G. B., Hudson, M. J., Iveson, P. B., Madic, C. & Russel, M. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2711–2720.  Web of Science CSD CrossRef Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wochter, J., OKeeffe, M. & Yaghi, O. (2002). Mater. Sci. 295, 469–472.  CAS Google Scholar
First citationEddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391–1397.  Web of Science CrossRef CAS Google Scholar
First citationGlunnlaugson, T., Leonard, J. P., Mulready, S. & Nieuwenhuyzen, M. (2004). Tetrahedron, 60, 105–113.  Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationLo, S. M. F., Chui, S. S. Y., Shek, L. Y., Lin, Z., Zhang, X. X., Wen, G. H. & Williams, I. D. (2000). J. Am. Chem. Soc. 122, 6293–6294.  Web of Science CSD CrossRef CAS Google Scholar
First citationQu, Y. L., Ke, Y. X., Lu, S. M., Fan, R., Pan, G. Q. & Li, J. M. (2005). J. Mol. Struct. 734, 7–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosi, N. L., Eddaoudi, M., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2002). Angew. Chem. 41, 284–287.  CrossRef CAS Google Scholar
First citationSaleh, M. I., Salhin, A., Saad, B., Zain, S. M., Rahman, N. A. & Ariffin, Z. (1998). J. Mol. Struct. 448, 63–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044.  Web of Science CSD CrossRef Google Scholar
First citationZheng, X.-J. & Jin, L.-P. (2003). Polyhedron, 22, 2617–2624.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, S. L., Yang, J. H., Yu, X. L., Chen, X. M. & Wong, W. T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m971-m972
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds