metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m931-m932

Tetra­kis(di­hydrogen pefloxacinium) di-μ2-chlorido-bis­­[tetra­chloridobismuthate(III)] tetra­chloride octa­hydrate

aInstitute of Chemistry, FEB RAS, Prospekt 100-letiya Vladivostoka 159, Vladivostok 690022, Russian Federation
*Correspondence e-mail: gerasimenko@ich.dvo.ru

(Received 2 June 2008; accepted 11 June 2008; online 19 June 2008)

The title compound {systematic name: tetra­kis[4-(3-carb­oxy-1-ethyl-6-fluoro-4-hydroxonio-1,4-dihydro-7-quinol­yl)-1-meth­yl­piperazin-1-ium] di-μ2-chlorido-bis­[tetra­chlorido­bismuth­ate(III)] tetra­chloride octa­hydrate}, (C17H22FN3O3)4[Bi2Cl10]Cl4·8H2O, is composed of edge-shared centrosymmetric dinuclear [Bi2Cl10]4− anions, Cl anions, dihydrogen pefloxacinium cations and water mol­ecules. The BiIII coordination polyhedron is a distorted octa­hedron. There are four short terminal Bi—Cl bonds [2.5037 (10)–2.6911 (7) Å] and two longer bridging bonds [2.8834 (8) and 3.0687 (9) Å] in each octa­hedron. Two sets of chloride ions and water mol­ecules are disordered over the same sites with site occupancies of 1/3 and 2/3, respectively. Anions, cations and water mol­ecules are linked by O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming a three-dimensional framework. There are also ππ stacking inter­actions between quinoline ring systems [centroid–centroid distance = 3.575 (1) Å].

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C17H22FN3O3)4[Bi2Cl10]Cl4·8H2O

  • Mr = 2399.89

  • Monoclinic, C 2/m

  • a = 14.4201 (14) Å

  • b = 25.305 (3) Å

  • c = 12.6359 (12) Å

  • β = 99.028 (2)°

  • V = 4553.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.35 mm−1

  • T = 173 (2) K

  • 0.30 × 0.05 × 0.01 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: Gaussian (XPREP, SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.606, Tmax = 0.958

  • 16488 measured reflections

  • 6329 independent reflections

  • 5310 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.08

  • 6329 reflections

  • 303 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Selected interatomic distances and short contacts to water molecules (Å)

Bi—Cl2 2.5037 (10)
Bi—Cl4 2.5737 (11)
Bi—Cl3 2.6910 (7)
Bi—Cl3i 2.6911 (7)
Bi—Cl1 2.8834 (8)
Bi—Cl1ii 3.0687 (9)
O6⋯O6i 2.822 (6)
O6⋯Cl6iii 2.863 (5)
O6⋯O5iv 2.961 (4)
O6⋯O6iii 3.074 (6)
O6⋯O3v 3.091 (4)
O7⋯Cl7vi 2.888 (7)
O7⋯O7vi 3.146 (14)
Symmetry codes: (i) x, -y+1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+2, y, -z+1; (iv) x+1, -y+1, z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (vi) -x, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H4⋯Cl5vii 0.84 2.18 3.014 (2) 174
O3—H3⋯O1 0.84 1.96 2.675 (3) 143
O3—H3⋯Cl6viii 0.84 2.06 2.559 (5) 118
O5—H5B⋯O1ix 0.83 (1) 2.009 (18) 2.790 (3) 157 (4)
O5—H5C⋯O7x 0.83 (1) 2.029 (13) 2.851 (5) 173 (3)
O5—H5C⋯Cl7x 0.83 (1) 2.238 (13) 3.056 (4) 170 (3)
N2—H2⋯Cl1xi 0.93 2.52 3.262 (2) 137
N2—H2⋯Cl3xii 0.93 2.77 3.423 (2) 128
Symmetry codes: (vii) x, y, z+1; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ix) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (x) -x, -y+1, -z+1; (xi) -x+1, -y+1, -z+1; (xii) -x+1, y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Pefloxacin (pfH) belongs to the second-generation quinolone antimicrobial agents. According to a search of the Cambridge Structural Database (CSD, Version 5.28; Allen, 2002), well determined structures are those where pefloxacin acts as an anion or as a single protonated cation. The present research deals with the synthesis and structure of a chlorido-bismuth complex with the doubly protonated cation of pefloxacin (pfH3)2+.

The asymmetric unit of the title compound, (I), contains one Bi atom, seven chlorine atoms (two of them are disordered), one pfH3 cation and three H2O molecules (from them a two are disordered). The Bi atoms are coordinated by six Cl atoms in a distorted octahedral geometry. Two Bi-centred octahedra are linked by double Cl bridges to form a centrosymmetric dinuclear [Bi2F10]4- complex (Fig. 1), with a Bi···Bii distance of 4.4596 (5) Å. In the Bi-octahedra there are four short terminal Bi—Cl bonds [2.5037 (10)-2.6911 (7) Å] and two longer bridging bonds [2.8834 (8) and 3.0687 (9) Å]. These Bi-anions pack up in columns parallel to the [0 0 1] direction (Fig. 2).

The protonation of pfH32+ is realised on the carbonyl atom O3 and N2 of the piperazine ring (Fig. 3). The hydrogen atom H3 is linked by an intramolecular hydrogen bond with O1 atom of the carboxyl group. Atoms O2 and N2 in the cation act as hydrogen-bond donors, via H4 and H2

There are three uncoordinated chlorine atoms (Cl5, Cl6 and Cl7) of which Cl6 and Cl7 are disordered and statistically replaced by atoms O6 and O7 of water molecules, respectively [Wyckoff positions 8j and 4i for Cl6/O6 and Cl7/O7, respectively]. Site occupation factors of these chloride ions were assigned equal to 1/3, and water molecule to 2/3 from the crystal chemistry considerations. The refinement of the Cl6/O6 and Cl7/O7 site occupation factors resulted in the same values with accuracy within 0.04. As the hydrogen atoms were not located for disordered water molecules, probable hydrogen bonds involving these atoms are given in Table 3.

In the crystal structure, the cations are packed along the aaxis. There exist ππ stacking interactions between quinoline ring systems (Fig.4), with nearest C···C contacts are in the range 3.292 (5)-3.365 (3) Å. Anions, cations and H2O-molecules are linked by a network of O—H···O, O—H···Cl and N—H···Cl hydrogen bonds into a three-dimensional framework.

Related literature top

For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Bi(OH)3 (1.00 g, 3.85 mmol) was reacted with pfH (1.50 g, 5.77 mmol) in a solution of HCl (35%, 15 ml). Yellow crystals were obtained after evaporation for 72 h at room temperature.

Refinement top

H atoms of H2O were located in a difference map and refined with Uiso(H) = 1.5Ueq(O) and the O-H distances were restrained to be similar. The other H atoms were positioned with idealized geometry using a riding model with C-H = 0.95, 0.98 and 0.99 Å; N-H = 0.93 Å and O-H = 0.84 Å. All H atoms were refined with Uiso set to 1.2 or 1.5 times Ueq of the parent atom. Atoms Cl6 and O6, and also Cl7 and O7, are disordered between them with site occupancies of 1/3 and 2/3, respectively. H atoms belonging to the disordered water molecules could not be located. The maximum peak and the deepest hole are located 0.86 Å and 1.13 Å from Bi, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the dinuclear [Bi2F10]4- complex, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: x, 1-y, z; (ii) 1-x, 1-y, 2-z.]
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. Dashed lines represent hydrogen bonds.
[Figure 3] Fig. 3. A view of the pfH32+ canion, with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 4] Fig. 4. The crystal structure of the title compound, viewed along the a axis. Dashed lines represent hydrogen bonds.
Tetrakis[4-(3-carboxy-1-ethyl-6-fluoro-4-hydroxonio-1,4-dihydro-7-quinolyl)- 1-methylpiperazin-1-ium] di-µ2-chlorido-bis[tetrachloridobismuthate(III)] tetrachloride octahydrate top
Crystal data top
(C17H22FN3O3)4[Bi2Cl10]Cl4·8H2OF(000) = 2392
Mr = 2399.89Dx = 1.750 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 897 reflections
a = 14.4201 (14) Åθ = 2.8–27.5°
b = 25.305 (3) ŵ = 4.35 mm1
c = 12.6359 (12) ÅT = 173 K
β = 99.028 (2)°Prism, yellow
V = 4553.7 (8) Å30.30 × 0.05 × 0.01 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6329 independent reflections
Radiation source: fine-focus sealed tube5310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.33 pixels mm-1θmax = 29.5°, θmin = 1.6°
ω scansh = 1619
Absorption correction: gaussian
(SADABS; Bruker, 2003)
k = 3430
Tmin = 0.606, Tmax = 0.958l = 178
16488 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0241P)2 + 5.6647P]
where P = (Fo2 + 2Fc2)/3
6329 reflections(Δ/σ)max = 0.010
303 parametersΔρmax = 1.23 e Å3
3 restraintsΔρmin = 1.17 e Å3
Crystal data top
(C17H22FN3O3)4[Bi2Cl10]Cl4·8H2OV = 4553.7 (8) Å3
Mr = 2399.89Z = 2
Monoclinic, C2/mMo Kα radiation
a = 14.4201 (14) ŵ = 4.35 mm1
b = 25.305 (3) ÅT = 173 K
c = 12.6359 (12) Å0.30 × 0.05 × 0.01 mm
β = 99.028 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6329 independent reflections
Absorption correction: gaussian
(SADABS; Bruker, 2003)
5310 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.958Rint = 0.048
16488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.23 e Å3
6329 reflectionsΔρmin = 1.17 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi0.478467 (9)0.50001.170934 (10)0.01789 (3)
Cl10.36184 (6)0.50000.96352 (7)0.02166 (18)
Cl20.32976 (7)0.50001.24998 (8)0.0332 (2)
Cl30.46439 (4)0.39397 (2)1.16382 (5)0.02578 (14)
Cl40.58921 (10)0.50001.35173 (9)0.0501 (3)
Cl50.50000.19810 (4)0.00000.0277 (2)
Cl60.9645 (3)0.58510 (18)0.4025 (3)0.0829 (12)0.33333
O60.9296 (2)0.55576 (12)0.3952 (3)0.0376 (8)0.66667
Cl70.0257 (3)0.50000.9040 (4)0.0483 (12)0.33333
O70.0152 (4)0.50000.8794 (5)0.0447 (17)0.66667
F20.69789 (11)0.22163 (6)0.19969 (11)0.0286 (4)
O10.55734 (13)0.17802 (7)0.73845 (15)0.0286 (5)
O20.56440 (14)0.25726 (7)0.81762 (14)0.0302 (5)
H40.55040.23960.86920.045*
O30.60949 (13)0.17118 (7)0.54491 (15)0.0283 (5)
H30.59690.15860.60250.042*
O50.05523 (17)0.41020 (10)0.2439 (2)0.0570 (7)
H5B0.0279 (12)0.3815 (5)0.234 (3)0.085*
H5C0.0302 (18)0.4357 (6)0.210 (2)0.085*
N10.70541 (15)0.33043 (8)0.19082 (16)0.0218 (5)
N20.74434 (15)0.38831 (9)0.00739 (17)0.0235 (5)
H20.68950.40830.00530.028*
N30.62148 (14)0.33321 (8)0.55077 (16)0.0198 (5)
C10.60166 (16)0.30659 (10)0.6364 (2)0.0215 (6)
H1A0.59050.32630.69720.026*
C20.59658 (16)0.25233 (10)0.6410 (2)0.0203 (6)
C30.61226 (17)0.22153 (11)0.5512 (2)0.0227 (6)
C40.63379 (16)0.25024 (10)0.45924 (19)0.0187 (5)
C50.65146 (16)0.22261 (10)0.36745 (19)0.0209 (6)
H50.64810.18510.36560.025*
C60.67306 (17)0.24941 (10)0.28238 (19)0.0212 (6)
C70.67653 (16)0.30550 (10)0.27776 (19)0.0206 (6)
C80.65728 (17)0.33298 (10)0.36801 (19)0.0209 (6)
H80.65720.37050.36770.025*
C90.63802 (16)0.30572 (10)0.45928 (19)0.0191 (5)
C100.65575 (17)0.31800 (11)0.08222 (19)0.0220 (6)
H10A0.59700.33880.06750.026*
H10B0.63910.28000.07780.026*
C110.71759 (18)0.33095 (11)0.0000 (2)0.0249 (6)
H11A0.77490.30880.01260.030*
H11B0.68380.32310.07260.030*
C120.79311 (18)0.40046 (11)0.1187 (2)0.0253 (6)
H12A0.80840.43860.12450.030*
H12B0.85270.38040.13330.030*
C130.73148 (19)0.38594 (11)0.2011 (2)0.0250 (6)
H13A0.76570.39280.27400.030*
H13B0.67420.40810.19040.030*
C140.57179 (17)0.22525 (10)0.73660 (19)0.0214 (6)
C150.62925 (18)0.39181 (10)0.5556 (2)0.0248 (6)
H15A0.59930.40490.61590.030*
H15B0.59480.40700.48860.030*
C160.72972 (19)0.41048 (11)0.5703 (2)0.0293 (7)
H16A0.76000.40310.64380.044*
H16B0.73120.44860.55690.044*
H16C0.76330.39190.51980.044*
C170.8038 (2)0.40306 (12)0.0740 (2)0.0336 (7)
H17A0.85940.38020.06610.050*
H17B0.82350.44000.06350.050*
H17C0.76780.39870.14590.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi0.02397 (6)0.01417 (5)0.01620 (5)0.0000.00521 (4)0.000
Cl10.0236 (4)0.0201 (4)0.0211 (4)0.0000.0032 (3)0.000
Cl20.0413 (4)0.0254 (4)0.0391 (5)0.0000.0257 (4)0.000
Cl30.0324 (3)0.0162 (3)0.0304 (3)0.0004 (2)0.0101 (3)0.0003 (2)
Cl40.0714 (8)0.0404 (6)0.0299 (5)0.0000.0188 (5)0.000
Cl50.0309 (4)0.0253 (4)0.0282 (4)0.0000.0085 (4)0.000
Cl60.079 (2)0.088 (3)0.084 (2)0.014 (2)0.0203 (19)0.022 (2)
O60.058 (2)0.0163 (14)0.0394 (17)0.0067 (14)0.0099 (15)0.0009 (13)
Cl70.050 (2)0.0267 (17)0.058 (2)0.0000.0206 (18)0.000
O70.042 (3)0.038 (3)0.050 (3)0.0000.004 (3)0.000
F20.0418 (8)0.0238 (8)0.0208 (7)0.0034 (7)0.0070 (6)0.0058 (6)
O10.0358 (10)0.0205 (9)0.0294 (10)0.0011 (8)0.0042 (8)0.0024 (7)
O20.0472 (10)0.0221 (9)0.0239 (9)0.0025 (8)0.0138 (8)0.0013 (7)
O30.0393 (10)0.0200 (9)0.0267 (9)0.0044 (8)0.0087 (8)0.0007 (7)
O50.0548 (14)0.0491 (15)0.0700 (17)0.0072 (12)0.0190 (13)0.0058 (13)
N10.0286 (10)0.0186 (10)0.0177 (10)0.0028 (9)0.0020 (8)0.0021 (8)
N20.0248 (10)0.0225 (11)0.0235 (10)0.0054 (9)0.0047 (8)0.0037 (8)
N30.0231 (9)0.0181 (10)0.0188 (9)0.0037 (8)0.0052 (8)0.0024 (8)
C10.0185 (10)0.0255 (13)0.0210 (11)0.0011 (10)0.0048 (9)0.0041 (10)
C20.0162 (10)0.0235 (12)0.0212 (11)0.0002 (9)0.0026 (9)0.0001 (9)
C30.0188 (11)0.0258 (13)0.0226 (12)0.0009 (10)0.0005 (10)0.0026 (10)
C40.0143 (10)0.0214 (12)0.0197 (11)0.0022 (9)0.0004 (9)0.0020 (9)
C50.0188 (11)0.0200 (12)0.0233 (12)0.0019 (9)0.0016 (9)0.0038 (9)
C60.0203 (11)0.0239 (12)0.0190 (11)0.0043 (10)0.0021 (9)0.0060 (9)
C70.0173 (10)0.0238 (12)0.0198 (11)0.0006 (9)0.0007 (9)0.0009 (9)
C80.0233 (11)0.0156 (11)0.0223 (12)0.0027 (9)0.0010 (10)0.0024 (9)
C90.0180 (10)0.0224 (12)0.0159 (11)0.0007 (9)0.0001 (9)0.0029 (9)
C100.0236 (11)0.0260 (13)0.0157 (11)0.0008 (10)0.0009 (9)0.0016 (9)
C110.0291 (12)0.0244 (13)0.0221 (12)0.0028 (11)0.0062 (10)0.0022 (10)
C120.0259 (12)0.0226 (13)0.0264 (13)0.0001 (10)0.0012 (10)0.0034 (10)
C130.0306 (13)0.0228 (13)0.0204 (12)0.0016 (11)0.0006 (10)0.0047 (10)
C140.0184 (11)0.0261 (13)0.0199 (11)0.0009 (10)0.0030 (9)0.0011 (10)
C150.0318 (12)0.0199 (12)0.0238 (12)0.0043 (10)0.0078 (10)0.0025 (10)
C160.0367 (14)0.0227 (13)0.0297 (13)0.0025 (11)0.0085 (11)0.0062 (11)
C170.0360 (14)0.0361 (16)0.0314 (14)0.0074 (12)0.0140 (12)0.0112 (12)
Geometric parameters (Å, º) top
Bi—Cl22.5037 (10)C2—C141.480 (4)
Bi—Cl42.5737 (11)C3—C41.445 (4)
Bi—Cl32.6910 (7)C4—C91.405 (3)
Bi—Cl3i2.6911 (7)C4—C51.411 (3)
Bi—Cl12.8834 (8)C5—C61.348 (4)
Bi—Cl1ii3.0687 (9)C5—H50.95
Bi—Biii4.4596 (5)C6—C71.422 (4)
Cl1—Biii3.0687 (9)C7—C81.400 (4)
F2—C61.353 (3)C8—C91.408 (4)
O1—C141.214 (3)C8—H80.95
O2—C141.323 (3)C10—C111.507 (4)
O2—H40.84C10—H10A0.99
O3—C31.277 (3)C10—H10B0.99
O3—H30.84C11—H11A0.99
O5—H5B0.828 (10)C11—H11B0.99
O5—H5C0.826 (11)C12—C131.516 (4)
N1—C71.386 (3)C12—H12A0.99
N1—C131.455 (3)C12—H12B0.99
N1—C101.479 (3)C13—H13A0.99
N2—C171.486 (4)C13—H13B0.99
N2—C111.501 (3)C15—C161.507 (4)
N2—C121.503 (3)C15—H15A0.99
N2—H20.93C15—H15B0.99
N3—C11.343 (3)C16—H16A0.98
N3—C91.401 (3)C16—H16B0.98
N3—C151.488 (3)C16—H16C0.98
C1—C21.377 (4)C17—H17A0.98
C1—H1A0.95C17—H17B0.98
C2—C31.424 (4)C17—H17C0.98
O6···O6i2.822 (6)O6···O3v3.091 (4)
O6···Cl6iii2.863 (5)O7···Cl7vi2.888 (7)
O6···O5iv2.961 (4)O7···O7vi3.146 (14)
O6···O6iii3.074 (6)
Cl2—Bi—Cl495.56 (4)N1—C7—C8122.8 (2)
Cl2—Bi—Cl387.046 (14)N1—C7—C6120.2 (2)
Cl4—Bi—Cl393.594 (14)C8—C7—C6116.7 (2)
Cl2—Bi—Cl3i87.046 (14)C7—C8—C9120.9 (2)
Cl4—Bi—Cl3i93.594 (14)C7—C8—H8119.6
Cl3—Bi—Cl3i171.10 (3)C9—C8—H8119.6
Cl2—Bi—Cl187.06 (3)N3—C9—C4118.9 (2)
Cl4—Bi—Cl1177.38 (4)N3—C9—C8120.9 (2)
Cl3—Bi—Cl186.529 (14)C4—C9—C8120.2 (2)
Cl3i—Bi—Cl186.529 (14)N1—C10—C11109.9 (2)
Cl2—Bi—Cl1ii170.06 (3)N1—C10—H10A109.7
Cl4—Bi—Cl1ii94.38 (4)C11—C10—H10A109.7
Cl3—Bi—Cl1ii92.335 (14)N1—C10—H10B109.7
Cl3i—Bi—Cl1ii92.335 (14)C11—C10—H10B109.7
Cl1—Bi—Cl1ii83.00 (3)H10A—C10—H10B108.2
Cl2—Bi—Biii130.14 (2)N2—C11—C10110.0 (2)
Cl4—Bi—Biii134.31 (3)N2—C11—H11A109.7
Cl3—Bi—Biii89.364 (14)C10—C11—H11A109.7
Cl3i—Bi—Biii89.364 (14)N2—C11—H11B109.7
Cl1—Bi—Biii43.076 (18)C10—C11—H11B109.7
Cl1ii—Bi—Biii39.921 (15)H11A—C11—H11B108.2
Bi—Cl1—Biii97.00 (2)N2—C12—C13110.8 (2)
C14—O2—H4109.5N2—C12—H12A109.5
C3—O3—H3109.5C13—C12—H12A109.5
H5B—O5—H5C117 (3)N2—C12—H12B109.5
C7—N1—C13118.3 (2)C13—C12—H12B109.5
C7—N1—C10118.5 (2)H12A—C12—H12B108.1
C13—N1—C10111.7 (2)N1—C13—C12110.1 (2)
C17—N2—C11111.8 (2)N1—C13—H13A109.6
C17—N2—C12111.1 (2)C12—C13—H13A109.6
C11—N2—C12109.50 (19)N1—C13—H13B109.6
C17—N2—H2108.1C12—C13—H13B109.6
C11—N2—H2108.1H13A—C13—H13B108.2
C12—N2—H2108.1O1—C14—O2123.6 (2)
C1—N3—C9120.1 (2)O1—C14—C2122.4 (2)
C1—N3—C15119.4 (2)O2—C14—C2114.0 (2)
C9—N3—C15120.5 (2)N3—C15—C16112.5 (2)
N3—C1—C2123.6 (2)N3—C15—H15A109.1
N3—C1—H1A118.2C16—C15—H15A109.1
C2—C1—H1A118.2N3—C15—H15B109.1
C1—C2—C3119.7 (2)C16—C15—H15B109.1
C1—C2—C14121.2 (2)H15A—C15—H15B107.8
C3—C2—C14119.1 (2)C15—C16—H16A109.5
O3—C3—C2126.0 (2)C15—C16—H16B109.5
O3—C3—C4117.4 (2)H16A—C16—H16B109.5
C2—C3—C4116.5 (2)C15—C16—H16C109.5
C9—C4—C5118.8 (2)H16A—C16—H16C109.5
C9—C4—C3121.1 (2)H16B—C16—H16C109.5
C5—C4—C3120.1 (2)N2—C17—H17A109.5
C6—C5—C4120.0 (2)N2—C17—H17B109.5
C6—C5—H5120.0H17A—C17—H17B109.5
C4—C5—H5120.0N2—C17—H17C109.5
C5—C6—F2118.5 (2)H17A—C17—H17C109.5
C5—C6—C7123.3 (2)H17B—C17—H17C109.5
F2—C6—C7118.1 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x+2, y, z+1; (iv) x+1, y+1, z; (v) x+3/2, y+1/2, z+1; (vi) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4···Cl5vii0.842.183.014 (2)174
O3—H3···O10.841.962.675 (3)143
O3—H3···Cl6viii0.842.062.559 (5)118
O5—H5B···O1ix0.83 (1)2.01 (2)2.790 (3)157 (4)
O5—H5C···O7x0.83 (1)2.03 (1)2.851 (5)173 (3)
O5—H5C···Cl7x0.83 (1)2.24 (1)3.056 (4)170 (3)
N2—H2···Cl1xi0.932.523.262 (2)137
N2—H2···Cl3xii0.932.773.423 (2)128
Symmetry codes: (vii) x, y, z+1; (viii) x+3/2, y1/2, z+1; (ix) x+1/2, y+1/2, z+1; (x) x, y+1, z+1; (xi) x+1, y+1, z+1; (xii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C17H22FN3O3)4[Bi2Cl10]Cl4·8H2O
Mr2399.89
Crystal system, space groupMonoclinic, C2/m
Temperature (K)173
a, b, c (Å)14.4201 (14), 25.305 (3), 12.6359 (12)
β (°) 99.028 (2)
V3)4553.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.35
Crystal size (mm)0.30 × 0.05 × 0.01
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionGaussian
(SADABS; Bruker, 2003)
Tmin, Tmax0.606, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
16488, 6329, 5310
Rint0.048
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.08
No. of reflections6329
No. of parameters303
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23, 1.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008).

Selected interatomic distances (Å) top
Bi—Cl22.5037 (10)Bi—Cl3i2.6911 (7)
Bi—Cl42.5737 (11)Bi—Cl12.8834 (8)
Bi—Cl32.6910 (7)Bi—Cl1ii3.0687 (9)
O6···O6i2.822 (6)O6···O3v3.091 (4)
O6···Cl6iii2.863 (5)O7···Cl7vi2.888 (7)
O6···O5iv2.961 (4)O7···O7vi3.146 (14)
O6···O6iii3.074 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x+2, y, z+1; (iv) x+1, y+1, z; (v) x+3/2, y+1/2, z+1; (vi) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4···Cl5vii0.842.183.014 (2)174
O3—H3···O10.841.962.675 (3)143
O3—H3···Cl6viii0.842.062.559 (5)118
O5—H5B···O1ix0.83 (1)2.009 (18)2.790 (3)157 (4)
O5—H5C···O7x0.83 (1)2.029 (13)2.851 (5)173 (3)
O5—H5C···Cl7x0.83 (1)2.238 (13)3.056 (4)170 (3)
N2—H2···Cl1xi0.932.523.262 (2)137
N2—H2···Cl3xii0.932.773.423 (2)128
Symmetry codes: (vii) x, y, z+1; (viii) x+3/2, y1/2, z+1; (ix) x+1/2, y+1/2, z+1; (x) x, y+1, z+1; (xi) x+1, y+1, z+1; (xii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Russian Foundation for Basic Research (project No. 08–03–91750) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m931-m932
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds