organic compounds
2-Methyl-7-nitro-2,3-dihydro-1-benzofuran
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn
The dihydrofuran ring of the title compound, C9H9NO3, adopts an The nitro group is twisted slightly away from the attached benzene ring [dihedral angle = 21.9 (1)°].
Related literature
For bond-length data, see: Allen et al. (1987). For details of the synthesis, see: Majumdar et al. (2008).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808017728/ci2613sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808017728/ci2613Isup2.hkl
The title compound was synthesized according to the literature method (Majumdar et al., 2008). Single crystals were obtained by slow evaporation of a methanol (25 ml) solution of the compound (0.30 g, 1.6 mmol) at room temperature for about 4 d.
H atoms were positioned geometrically [C-H = 0.93-0.98 Å] and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic and methylene H and 1.5 for methyl H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H9NO3 | F(000) = 752 |
Mr = 179.17 | Dx = 1.382 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 8.4250 (17) Å | θ = 10–13° |
b = 7.2260 (14) Å | µ = 0.11 mm−1 |
c = 28.295 (6) Å | T = 298 K |
V = 1722.6 (6) Å3 | Block, colourless |
Z = 8 | 0.30 × 0.20 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 829 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 25.2°, θmin = 1.4° |
ω/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→8 |
Tmin = 0.969, Tmax = 0.979 | l = 0→33 |
2977 measured reflections | 3 standard reflections every 200 reflections |
1551 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.06P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3 |
1551 reflections | (Δ/σ)max = 0.001 |
118 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C9H9NO3 | V = 1722.6 (6) Å3 |
Mr = 179.17 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.4250 (17) Å | µ = 0.11 mm−1 |
b = 7.2260 (14) Å | T = 298 K |
c = 28.295 (6) Å | 0.30 × 0.20 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 829 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.048 |
Tmin = 0.969, Tmax = 0.979 | 3 standard reflections every 200 reflections |
2977 measured reflections | intensity decay: none |
1551 independent reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.32 e Å−3 |
1551 reflections | Δρmin = −0.26 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N | 0.5181 (3) | 0.0623 (5) | 0.39917 (10) | 0.0581 (8) | |
O1 | 0.2624 (3) | 0.0149 (4) | 0.32787 (7) | 0.0601 (8) | |
C1 | 0.1077 (6) | 0.0403 (8) | 0.25775 (16) | 0.0970 (16) | |
H1A | 0.1909 | −0.0204 | 0.2405 | 0.146* | |
H1B | 0.1258 | 0.1715 | 0.2576 | 0.146* | |
H1C | 0.0074 | 0.0140 | 0.2431 | 0.146* | |
O2 | 0.5612 (3) | 0.0409 (5) | 0.35839 (9) | 0.0867 (10) | |
C2 | 0.1064 (4) | −0.0249 (8) | 0.30507 (14) | 0.0812 (14) | |
H2A | 0.0947 | −0.1598 | 0.3038 | 0.097* | |
O3 | 0.6098 (3) | 0.0689 (6) | 0.43222 (10) | 0.0992 (12) | |
C3 | −0.0172 (4) | 0.0473 (6) | 0.33963 (14) | 0.0706 (11) | |
H3A | −0.0614 | 0.1638 | 0.3289 | 0.085* | |
H3B | −0.1025 | −0.0413 | 0.3438 | 0.085* | |
C4 | 0.0753 (4) | 0.0725 (5) | 0.38480 (12) | 0.0532 (9) | |
C5 | 0.0285 (4) | 0.1112 (5) | 0.42971 (13) | 0.0634 (10) | |
H5A | −0.0788 | 0.1240 | 0.4368 | 0.076* | |
C6 | 0.1416 (5) | 0.1314 (6) | 0.46479 (13) | 0.0624 (10) | |
H6A | 0.1093 | 0.1557 | 0.4956 | 0.075* | |
C7 | 0.3000 (4) | 0.1164 (5) | 0.45498 (12) | 0.0560 (9) | |
H7A | 0.3747 | 0.1319 | 0.4789 | 0.067* | |
C8 | 0.3491 (4) | 0.0774 (5) | 0.40863 (11) | 0.0460 (8) | |
C9 | 0.2360 (4) | 0.0537 (4) | 0.37377 (11) | 0.0459 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N | 0.0376 (15) | 0.085 (2) | 0.0513 (17) | −0.0068 (16) | −0.0090 (16) | 0.0044 (16) |
O1 | 0.0358 (11) | 0.104 (2) | 0.0411 (12) | 0.0006 (13) | −0.0058 (12) | −0.0061 (12) |
C1 | 0.066 (3) | 0.151 (5) | 0.074 (3) | −0.004 (3) | −0.022 (3) | 0.017 (3) |
O2 | 0.0389 (13) | 0.168 (3) | 0.0530 (16) | 0.0016 (17) | 0.0045 (13) | −0.0016 (17) |
C2 | 0.047 (2) | 0.134 (4) | 0.063 (2) | −0.004 (2) | −0.014 (2) | −0.002 (3) |
O3 | 0.0446 (15) | 0.176 (3) | 0.0773 (19) | −0.0046 (19) | −0.0248 (16) | −0.009 (2) |
C3 | 0.0399 (19) | 0.098 (3) | 0.074 (3) | −0.003 (2) | −0.009 (2) | −0.002 (2) |
C4 | 0.0313 (16) | 0.070 (2) | 0.058 (2) | 0.0012 (16) | 0.0062 (16) | 0.0053 (18) |
C5 | 0.044 (2) | 0.069 (3) | 0.077 (3) | 0.0068 (18) | 0.009 (2) | 0.004 (2) |
C6 | 0.069 (2) | 0.073 (2) | 0.0458 (19) | 0.006 (2) | 0.011 (2) | −0.0021 (18) |
C7 | 0.060 (2) | 0.061 (2) | 0.047 (2) | −0.0053 (19) | −0.0032 (18) | 0.0004 (17) |
C8 | 0.0352 (17) | 0.060 (2) | 0.0426 (18) | −0.0023 (15) | −0.0007 (15) | 0.0044 (16) |
C9 | 0.0375 (16) | 0.0554 (19) | 0.0447 (17) | −0.0043 (15) | −0.0028 (16) | 0.0030 (16) |
N—O3 | 1.214 (4) | C3—H3A | 0.97 |
N—O2 | 1.219 (3) | C3—H3B | 0.97 |
N—C8 | 1.453 (4) | C4—C5 | 1.360 (5) |
O1—C9 | 1.347 (4) | C4—C9 | 1.396 (4) |
O1—C2 | 1.492 (4) | C5—C6 | 1.384 (5) |
C1—C2 | 1.420 (6) | C5—H5A | 0.93 |
C1—H1A | 0.96 | C6—C7 | 1.367 (5) |
C1—H1B | 0.96 | C6—H6A | 0.93 |
C1—H1C | 0.96 | C7—C8 | 1.404 (4) |
C2—C3 | 1.520 (6) | C7—H7A | 0.93 |
C2—H2A | 0.98 | C8—C9 | 1.382 (4) |
C3—C4 | 1.508 (5) | ||
O3—N—O2 | 123.0 (3) | C2—C3—H3B | 111.1 |
O3—N—C8 | 118.6 (3) | H3A—C3—H3B | 109.0 |
O2—N—C8 | 118.4 (3) | C5—C4—C9 | 120.7 (3) |
C9—O1—C2 | 108.2 (3) | C5—C4—C3 | 131.8 (3) |
C2—C1—H1A | 109.5 | C9—C4—C3 | 107.5 (3) |
C2—C1—H1B | 109.5 | C4—C5—C6 | 119.5 (3) |
H1A—C1—H1B | 109.5 | C4—C5—H5A | 120.3 |
C2—C1—H1C | 109.5 | C6—C5—H5A | 120.3 |
H1A—C1—H1C | 109.5 | C7—C6—C5 | 121.2 (3) |
H1B—C1—H1C | 109.5 | C7—C6—H6A | 119.4 |
C1—C2—O1 | 109.7 (4) | C5—C6—H6A | 119.4 |
C1—C2—C3 | 119.9 (4) | C6—C7—C8 | 119.6 (3) |
O1—C2—C3 | 105.0 (3) | C6—C7—H7A | 120.2 |
C1—C2—H2A | 107.2 | C8—C7—H7A | 120.2 |
O1—C2—H2A | 107.2 | C9—C8—C7 | 119.2 (3) |
C3—C2—H2A | 107.2 | C9—C8—N | 122.3 (3) |
C4—C3—C2 | 103.5 (3) | C7—C8—N | 118.4 (3) |
C4—C3—H3A | 111.1 | O1—C9—C8 | 126.9 (3) |
C2—C3—H3A | 111.1 | O1—C9—C4 | 113.3 (3) |
C4—C3—H3B | 111.1 | C8—C9—C4 | 119.8 (3) |
C9—O1—C2—C1 | 145.4 (4) | O2—N—C8—C9 | 5.3 (5) |
C9—O1—C2—C3 | 15.4 (4) | O3—N—C8—C7 | 5.9 (5) |
C1—C2—C3—C4 | −139.3 (4) | O2—N—C8—C7 | −175.1 (3) |
O1—C2—C3—C4 | −15.5 (5) | C2—O1—C9—C8 | 172.0 (4) |
C2—C3—C4—C5 | −170.7 (4) | C2—O1—C9—C4 | −8.9 (4) |
C2—C3—C4—C9 | 10.9 (5) | C7—C8—C9—O1 | −179.7 (3) |
C9—C4—C5—C6 | −0.2 (6) | N—C8—C9—O1 | 0.0 (6) |
C3—C4—C5—C6 | −178.4 (4) | C7—C8—C9—C4 | 1.3 (5) |
C4—C5—C6—C7 | 1.2 (6) | N—C8—C9—C4 | −179.1 (3) |
C5—C6—C7—C8 | −0.8 (6) | C5—C4—C9—O1 | 179.8 (3) |
C6—C7—C8—C9 | −0.4 (5) | C3—C4—C9—O1 | −1.6 (4) |
C6—C7—C8—N | 180.0 (3) | C5—C4—C9—C8 | −1.0 (6) |
O3—N—C8—C9 | −173.7 (3) | C3—C4—C9—C8 | 177.6 (3) |
Experimental details
Crystal data | |
Chemical formula | C9H9NO3 |
Mr | 179.17 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 8.4250 (17), 7.2260 (14), 28.295 (6) |
V (Å3) | 1722.6 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.969, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2977, 1551, 829 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.182, 1.01 |
No. of reflections | 1551 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.26 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank the Center for Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Majumdar, K. C., Alam, S. & Chattopadhyay, B. (2008). Tetrahedron, 64, 597–643. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The tittle compound, 2-methyl-7-nitro-2,3-dihydrobenzofuran, is an important intermediate for the synthesis of 2-methyl-2,3-dihydrobenzofuran-7-amine. we report here the crystal structure of the title compound.
The molecular structure of the compound is shown in Fig. 1. Bond lengths and angles are within normal ranges (Allen et al., 1987), except the C1—C2 bond length of 1.420 (6) Å. The dihydrofuran ring is in an envelope conformation with C2 as flap atom. The nitro group is slightly twisted away from the attached benzene ring [O2—N—C8—C9 = 5.3 (5)° and O3—N—C8—C7 = 5.9 (5)°]. No hydrogen bonding interactions are observed in the crystal structure (Fig.2).