organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-7-nitro-2,3-di­hydro-1-benzo­furan

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 4 June 2008; accepted 11 June 2008; online 19 June 2008)

The dihydro­furan ring of the title compound, C9H9NO3, adopts an envelope conformation. The nitro group is twisted slightly away from the attached benzene ring [dihedral angle = 21.9 (1)°].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of the synthesis, see: Majumdar et al. (2008[Majumdar, K. C., Alam, S. & Chattopadhyay, B. (2008). Tetrahedron, 64, 597-643.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NO3

  • Mr = 179.17

  • Orthorhombic, P b c a

  • a = 8.4250 (17) Å

  • b = 7.2260 (14) Å

  • c = 28.295 (6) Å

  • V = 1722.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.979

  • 2977 measured reflections

  • 1551 independent reflections

  • 829 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.182

  • S = 1.01

  • 1551 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, 2-methyl-7-nitro-2,3-dihydrobenzofuran, is an important intermediate for the synthesis of 2-methyl-2,3-dihydrobenzofuran-7-amine. we report here the crystal structure of the title compound.

The molecular structure of the compound is shown in Fig. 1. Bond lengths and angles are within normal ranges (Allen et al., 1987), except the C1—C2 bond length of 1.420 (6) Å. The dihydrofuran ring is in an envelope conformation with C2 as flap atom. The nitro group is slightly twisted away from the attached benzene ring [O2—N—C8—C9 = 5.3 (5)° and O3—N—C8—C7 = 5.9 (5)°]. No hydrogen bonding interactions are observed in the crystal structure (Fig.2).

Related literature top

For bond-length data, see: Allen et al. (1987). For details of the synthesis, see: Majumdar et al. (2008).

Experimental top

The title compound was synthesized according to the literature method (Majumdar et al., 2008). Single crystals were obtained by slow evaporation of a methanol (25 ml) solution of the compound (0.30 g, 1.6 mmol) at room temperature for about 4 d.

Refinement top

H atoms were positioned geometrically [C-H = 0.93-0.98 Å] and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic and methylene H and 1.5 for methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of the molecular packing in the title compound.
2-Methyl-7-nitro-2,3-dihydro-1-benzofuran top
Crystal data top
C9H9NO3F(000) = 752
Mr = 179.17Dx = 1.382 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.4250 (17) Åθ = 10–13°
b = 7.2260 (14) ŵ = 0.11 mm1
c = 28.295 (6) ÅT = 298 K
V = 1722.6 (6) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
829 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.2°, θmin = 1.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.969, Tmax = 0.979l = 033
2977 measured reflections3 standard reflections every 200 reflections
1551 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
1551 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C9H9NO3V = 1722.6 (6) Å3
Mr = 179.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.4250 (17) ŵ = 0.11 mm1
b = 7.2260 (14) ÅT = 298 K
c = 28.295 (6) Å0.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
829 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.969, Tmax = 0.9793 standard reflections every 200 reflections
2977 measured reflections intensity decay: none
1551 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
1551 reflectionsΔρmin = 0.26 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.5181 (3)0.0623 (5)0.39917 (10)0.0581 (8)
O10.2624 (3)0.0149 (4)0.32787 (7)0.0601 (8)
C10.1077 (6)0.0403 (8)0.25775 (16)0.0970 (16)
H1A0.19090.02040.24050.146*
H1B0.12580.17150.25760.146*
H1C0.00740.01400.24310.146*
O20.5612 (3)0.0409 (5)0.35839 (9)0.0867 (10)
C20.1064 (4)0.0249 (8)0.30507 (14)0.0812 (14)
H2A0.09470.15980.30380.097*
O30.6098 (3)0.0689 (6)0.43222 (10)0.0992 (12)
C30.0172 (4)0.0473 (6)0.33963 (14)0.0706 (11)
H3A0.06140.16380.32890.085*
H3B0.10250.04130.34380.085*
C40.0753 (4)0.0725 (5)0.38480 (12)0.0532 (9)
C50.0285 (4)0.1112 (5)0.42971 (13)0.0634 (10)
H5A0.07880.12400.43680.076*
C60.1416 (5)0.1314 (6)0.46479 (13)0.0624 (10)
H6A0.10930.15570.49560.075*
C70.3000 (4)0.1164 (5)0.45498 (12)0.0560 (9)
H7A0.37470.13190.47890.067*
C80.3491 (4)0.0774 (5)0.40863 (11)0.0460 (8)
C90.2360 (4)0.0537 (4)0.37377 (11)0.0459 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0376 (15)0.085 (2)0.0513 (17)0.0068 (16)0.0090 (16)0.0044 (16)
O10.0358 (11)0.104 (2)0.0411 (12)0.0006 (13)0.0058 (12)0.0061 (12)
C10.066 (3)0.151 (5)0.074 (3)0.004 (3)0.022 (3)0.017 (3)
O20.0389 (13)0.168 (3)0.0530 (16)0.0016 (17)0.0045 (13)0.0016 (17)
C20.047 (2)0.134 (4)0.063 (2)0.004 (2)0.014 (2)0.002 (3)
O30.0446 (15)0.176 (3)0.0773 (19)0.0046 (19)0.0248 (16)0.009 (2)
C30.0399 (19)0.098 (3)0.074 (3)0.003 (2)0.009 (2)0.002 (2)
C40.0313 (16)0.070 (2)0.058 (2)0.0012 (16)0.0062 (16)0.0053 (18)
C50.044 (2)0.069 (3)0.077 (3)0.0068 (18)0.009 (2)0.004 (2)
C60.069 (2)0.073 (2)0.0458 (19)0.006 (2)0.011 (2)0.0021 (18)
C70.060 (2)0.061 (2)0.047 (2)0.0053 (19)0.0032 (18)0.0004 (17)
C80.0352 (17)0.060 (2)0.0426 (18)0.0023 (15)0.0007 (15)0.0044 (16)
C90.0375 (16)0.0554 (19)0.0447 (17)0.0043 (15)0.0028 (16)0.0030 (16)
Geometric parameters (Å, º) top
N—O31.214 (4)C3—H3A0.97
N—O21.219 (3)C3—H3B0.97
N—C81.453 (4)C4—C51.360 (5)
O1—C91.347 (4)C4—C91.396 (4)
O1—C21.492 (4)C5—C61.384 (5)
C1—C21.420 (6)C5—H5A0.93
C1—H1A0.96C6—C71.367 (5)
C1—H1B0.96C6—H6A0.93
C1—H1C0.96C7—C81.404 (4)
C2—C31.520 (6)C7—H7A0.93
C2—H2A0.98C8—C91.382 (4)
C3—C41.508 (5)
O3—N—O2123.0 (3)C2—C3—H3B111.1
O3—N—C8118.6 (3)H3A—C3—H3B109.0
O2—N—C8118.4 (3)C5—C4—C9120.7 (3)
C9—O1—C2108.2 (3)C5—C4—C3131.8 (3)
C2—C1—H1A109.5C9—C4—C3107.5 (3)
C2—C1—H1B109.5C4—C5—C6119.5 (3)
H1A—C1—H1B109.5C4—C5—H5A120.3
C2—C1—H1C109.5C6—C5—H5A120.3
H1A—C1—H1C109.5C7—C6—C5121.2 (3)
H1B—C1—H1C109.5C7—C6—H6A119.4
C1—C2—O1109.7 (4)C5—C6—H6A119.4
C1—C2—C3119.9 (4)C6—C7—C8119.6 (3)
O1—C2—C3105.0 (3)C6—C7—H7A120.2
C1—C2—H2A107.2C8—C7—H7A120.2
O1—C2—H2A107.2C9—C8—C7119.2 (3)
C3—C2—H2A107.2C9—C8—N122.3 (3)
C4—C3—C2103.5 (3)C7—C8—N118.4 (3)
C4—C3—H3A111.1O1—C9—C8126.9 (3)
C2—C3—H3A111.1O1—C9—C4113.3 (3)
C4—C3—H3B111.1C8—C9—C4119.8 (3)
C9—O1—C2—C1145.4 (4)O2—N—C8—C95.3 (5)
C9—O1—C2—C315.4 (4)O3—N—C8—C75.9 (5)
C1—C2—C3—C4139.3 (4)O2—N—C8—C7175.1 (3)
O1—C2—C3—C415.5 (5)C2—O1—C9—C8172.0 (4)
C2—C3—C4—C5170.7 (4)C2—O1—C9—C48.9 (4)
C2—C3—C4—C910.9 (5)C7—C8—C9—O1179.7 (3)
C9—C4—C5—C60.2 (6)N—C8—C9—O10.0 (6)
C3—C4—C5—C6178.4 (4)C7—C8—C9—C41.3 (5)
C4—C5—C6—C71.2 (6)N—C8—C9—C4179.1 (3)
C5—C6—C7—C80.8 (6)C5—C4—C9—O1179.8 (3)
C6—C7—C8—C90.4 (5)C3—C4—C9—O11.6 (4)
C6—C7—C8—N180.0 (3)C5—C4—C9—C81.0 (6)
O3—N—C8—C9173.7 (3)C3—C4—C9—C8177.6 (3)

Experimental details

Crystal data
Chemical formulaC9H9NO3
Mr179.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.4250 (17), 7.2260 (14), 28.295 (6)
V3)1722.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
2977, 1551, 829
Rint0.048
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.182, 1.01
No. of reflections1551
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMajumdar, K. C., Alam, S. & Chattopadhyay, B. (2008). Tetrahedron, 64, 597–643.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds