organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­methyl­phenyl benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 June 2008; accepted 10 June 2008; online 19 June 2008)

The crystal structure of the title compound (24DMPBA), C15H14O2, resembles those of 4-methyl­phenyl benzoate, 2,3-dimethyl­phenyl benzoate and other aryl benzoates, with similar bond parameters. The central –O—C—O– group in 24DMPBA makes dihedral angles of 85.81 (5) and 5.71 (13)°, respectively, with the benzoyl and phenyl rings, while the two aromatic rings form a dihedral angle of 80.25 (5)°. The mol­ecules are packed with their axes parallel to the a-axis direction.

Related literature

For related literature, see: Gowda et al. (2007[Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.], 2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o844.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2

  • Mr = 226.26

  • Monoclinic, P 21 /c

  • a = 7.9813 (2) Å

  • b = 14.3260 (3) Å

  • c = 11.0932 (2) Å

  • β = 94.028 (2)°

  • V = 1265.26 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.48 × 0.38 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.965, Tmax = 0.987

  • 28657 measured reflections

  • 2471 independent reflections

  • 2056 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.134

  • S = 1.08

  • 2471 reflections

  • 156 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the solid state geometries of aryl benzoates (Gowda et al., 2007, 2008), the structure of 2,4-dimethylphenyl benzoate (24DMPBA) has been determined. The structure of 24DMPBA (Fig. 1) is similar to those of 4-methylphenyl benzoate (4MePBA)(Gowda et al., 2007), 2,3-dimethylphenyl benzoate (23DMPBA) (Gowda et al., 2008) and other aryl benzoates. The central –O—C—O– group in 24DMPBA makes a dihedral angle of 85.81 (5)° with the benzoyl phenyl ring and 5.71 (13)° with the phenyl ring. The two aromatic rings in 24DMPBA form a dihedral angle of 80.25 (5)°. The bond parameters in 24DMPBA are similar to those in 4MePBA, 23DMPBA and other aryl benzoates. Part of the crystal structure of the title compound as viewed along the a axis is shown in Fig.2.

Related literature top

For related literature, see: Gowda et al. (2007, 2008); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms were placed in calculated positions and treated as riding with C-H = 0.93Å (aromatic) or 0.96Å (methyl), and Uiso(H) = 1.2 Ueq(CH) and 1.5Ueq(CH3). The methyl groups (C14,C15) are disordered over two different orientations. The occupancy factor for the major orientation refined to 0.56 (3) for the C14-methyl group and 0.67 (3) for the C15-methyl group.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound as viewed along the a axis. H atoms have been omitted for the sake of clarity.
2,4-Dimethylphenyl benzoate top
Crystal data top
C15H14O2F(000) = 480
Mr = 226.26Dx = 1.188 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12993 reflections
a = 7.9813 (2) Åθ = 3.2–29.3°
b = 14.3260 (3) ŵ = 0.08 mm1
c = 11.0932 (2) ÅT = 295 K
β = 94.028 (2)°Block, colourless
V = 1265.26 (5) Å30.48 × 0.38 × 0.21 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2471 independent reflections
Graphite monochromator2056 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.031
ω scans with κ offsetsθmax = 26.0°, θmin = 5.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 99
Tmin = 0.965, Tmax = 0.987k = 1717
28657 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2483P]
where P = (Fo2 + 2Fc2)/3
2471 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.16 e Å3
4 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14O2V = 1265.26 (5) Å3
Mr = 226.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9813 (2) ŵ = 0.08 mm1
b = 14.3260 (3) ÅT = 295 K
c = 11.0932 (2) Å0.48 × 0.38 × 0.21 mm
β = 94.028 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2471 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2056 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.987Rint = 0.031
28657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
2471 reflectionsΔρmin = 0.15 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.77410 (13)0.30501 (7)0.43628 (10)0.0642 (3)
O20.56045 (16)0.31504 (8)0.29564 (11)0.0795 (4)
C10.65706 (18)0.35245 (10)0.36678 (13)0.0540 (4)
C20.66645 (18)0.45392 (10)0.38934 (13)0.0529 (4)
C30.5646 (2)0.51221 (12)0.31812 (17)0.0750 (5)
H30.49190.48710.25740.09*
C40.5690 (3)0.60709 (14)0.3358 (2)0.0901 (6)
H40.50040.64580.28650.108*
C50.6720 (3)0.64395 (12)0.4237 (3)0.0912 (7)
H50.67480.70820.43530.109*
C60.7731 (3)0.58741 (14)0.4966 (2)0.0971 (7)
H60.84370.61340.55790.116*
C70.7711 (2)0.49201 (12)0.47963 (18)0.0738 (5)
H70.84020.45370.52920.089*
C80.77716 (18)0.20698 (10)0.42443 (13)0.0552 (4)
C90.8731 (2)0.16674 (11)0.34018 (14)0.0623 (4)
C100.8778 (2)0.06901 (12)0.33938 (17)0.0732 (5)
H100.94030.03920.28310.088*
C110.7940 (2)0.01520 (12)0.41818 (18)0.0759 (5)
C120.7035 (2)0.05916 (12)0.50064 (19)0.0786 (5)
H120.64730.02390.55550.094*
C130.6936 (2)0.15527 (12)0.50441 (16)0.0682 (4)
H130.63060.18450.56090.082*
C140.9689 (3)0.22412 (17)0.2560 (2)0.0964 (6)
H14A0.98840.18810.18540.145*0.56 (3)
H14B1.07450.24230.29580.145*0.56 (3)
H14C0.90520.27890.23280.145*0.56 (3)
H14D0.99040.28470.29060.145*0.44 (3)
H14E0.90420.23050.18020.145*0.44 (3)
H14F1.07350.19390.24320.145*0.44 (3)
C150.8030 (3)0.09032 (13)0.4133 (3)0.1179 (10)
H15A0.7710.11590.48840.177*0.67 (3)
H15B0.91570.10920.40020.177*0.67 (3)
H15C0.72790.11280.34840.177*0.67 (3)
H15D0.83870.10940.33620.177*0.33 (3)
H15E0.69410.11610.42440.177*0.33 (3)
H15F0.88180.11240.47620.177*0.33 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0729 (7)0.0412 (5)0.0751 (7)0.0067 (5)0.0183 (5)0.0071 (5)
O20.0873 (8)0.0582 (7)0.0878 (8)0.0055 (6)0.0314 (7)0.0134 (6)
C10.0571 (8)0.0488 (8)0.0553 (8)0.0039 (6)0.0018 (7)0.0026 (6)
C20.0542 (8)0.0450 (7)0.0601 (8)0.0017 (6)0.0072 (6)0.0017 (6)
C30.0791 (11)0.0585 (10)0.0857 (12)0.0119 (8)0.0066 (9)0.0087 (8)
C40.0900 (14)0.0574 (11)0.1237 (17)0.0170 (10)0.0124 (13)0.0235 (11)
C50.0875 (13)0.0391 (9)0.151 (2)0.0004 (9)0.0357 (14)0.0035 (11)
C60.1008 (15)0.0578 (11)0.1305 (18)0.0126 (10)0.0065 (13)0.0219 (11)
C70.0802 (11)0.0480 (9)0.0906 (12)0.0014 (8)0.0120 (9)0.0058 (8)
C80.0599 (9)0.0420 (7)0.0614 (9)0.0049 (6)0.0113 (7)0.0057 (6)
C90.0636 (9)0.0620 (9)0.0598 (9)0.0067 (7)0.0077 (7)0.0058 (7)
C100.0728 (11)0.0665 (10)0.0775 (11)0.0210 (8)0.0152 (8)0.0246 (8)
C110.0760 (11)0.0466 (9)0.0998 (13)0.0052 (7)0.0321 (9)0.0061 (8)
C120.0782 (12)0.0592 (10)0.0962 (13)0.0084 (8)0.0077 (9)0.0118 (9)
C130.0691 (10)0.0601 (10)0.0752 (11)0.0040 (8)0.0039 (8)0.0023 (8)
C140.1010 (15)0.1049 (16)0.0852 (13)0.0047 (12)0.0189 (11)0.0038 (12)
C150.1271 (19)0.0463 (10)0.170 (2)0.0118 (10)0.0637 (18)0.0131 (12)
Geometric parameters (Å, º) top
O1—C11.3519 (17)C10—C111.374 (3)
O1—C81.4108 (17)C10—H100.93
O2—C11.1913 (17)C11—C121.359 (3)
C1—C21.476 (2)C11—C151.514 (2)
C2—C71.371 (2)C12—C131.380 (2)
C2—C31.376 (2)C12—H120.93
C3—C41.373 (3)C13—H130.93
C3—H30.93C14—H14A0.96
C4—C51.339 (3)C14—H14B0.96
C4—H40.93C14—H14C0.96
C5—C61.367 (3)C14—H14D0.96
C5—H50.93C14—H14E0.96
C6—C71.379 (3)C14—H14F0.96
C6—H60.93C15—H15A0.96
C7—H70.93C15—H15B0.96
C8—C131.365 (2)C15—H15C0.96
C8—C91.376 (2)C15—H15D0.96
C9—C101.401 (2)C15—H15E0.96
C9—C141.494 (3)C15—H15F0.96
C1—O1—C8117.59 (11)C9—C14—H14B109.5
O2—C1—O1122.74 (14)H14A—C14—H14B109.5
O2—C1—C2125.32 (14)C9—C14—H14C109.5
O1—C1—C2111.93 (12)H14A—C14—H14C109.5
C7—C2—C3118.87 (15)H14B—C14—H14C109.5
C7—C2—C1122.47 (14)C9—C14—H14D109.5
C3—C2—C1118.65 (14)H14A—C14—H14D141.1
C4—C3—C2120.70 (19)H14B—C14—H14D56.3
C4—C3—H3119.7H14C—C14—H14D56.3
C2—C3—H3119.7C9—C14—H14E109.5
C5—C4—C3120.17 (19)H14A—C14—H14E56.3
C5—C4—H4119.9H14B—C14—H14E141.1
C3—C4—H4119.9H14C—C14—H14E56.3
C4—C5—C6120.23 (17)H14D—C14—H14E109.5
C4—C5—H5119.9C9—C14—H14F109.5
C6—C5—H5119.9H14A—C14—H14F56.3
C5—C6—C7120.4 (2)H14B—C14—H14F56.3
C5—C6—H6119.8H14C—C14—H14F141.1
C7—C6—H6119.8H14D—C14—H14F109.5
C2—C7—C6119.64 (18)H14E—C14—H14F109.5
C2—C7—H7120.2C11—C15—H15A109.5
C6—C7—H7120.2C11—C15—H15B109.5
C13—C8—C9122.33 (15)H15A—C15—H15B109.5
C13—C8—O1117.84 (14)C11—C15—H15C109.5
C9—C8—O1119.64 (14)H15A—C15—H15C109.5
C8—C9—C10116.07 (16)H15B—C15—H15C109.5
C8—C9—C14121.84 (16)C11—C15—H15D109.5
C10—C9—C14122.09 (17)H15A—C15—H15D141.1
C11—C10—C9122.86 (16)H15B—C15—H15D56.3
C11—C10—H10118.6H15C—C15—H15D56.3
C9—C10—H10118.6C11—C15—H15E109.5
C12—C11—C10118.26 (16)H15A—C15—H15E56.3
C12—C11—C15121.0 (2)H15B—C15—H15E141.1
C10—C11—C15120.7 (2)H15C—C15—H15E56.3
C11—C12—C13121.14 (18)H15D—C15—H15E109.5
C11—C12—H12119.4C11—C15—H15F109.5
C13—C12—H12119.4H15A—C15—H15F56.3
C8—C13—C12119.34 (17)H15B—C15—H15F56.3
C8—C13—H13120.3H15C—C15—H15F141.1
C12—C13—H13120.3H15D—C15—H15F109.5
C9—C14—H14A109.5H15E—C15—H15F109.5
C8—O1—C1—O21.4 (2)C1—O1—C8—C989.23 (17)
C8—O1—C1—C2179.25 (12)C13—C8—C9—C101.2 (2)
O2—C1—C2—C7174.36 (17)O1—C8—C9—C10176.08 (13)
O1—C1—C2—C76.4 (2)C13—C8—C9—C14177.81 (16)
O2—C1—C2—C34.7 (2)O1—C8—C9—C142.9 (2)
O1—C1—C2—C3174.61 (14)C8—C9—C10—C110.7 (2)
C7—C2—C3—C40.9 (3)C14—C9—C10—C11178.30 (17)
C1—C2—C3—C4179.98 (17)C9—C10—C11—C120.3 (3)
C2—C3—C4—C50.6 (3)C9—C10—C11—C15179.91 (16)
C3—C4—C5—C60.1 (3)C10—C11—C12—C130.9 (3)
C4—C5—C6—C70.5 (3)C15—C11—C12—C13179.29 (17)
C3—C2—C7—C60.5 (3)C9—C8—C13—C120.7 (2)
C1—C2—C7—C6179.57 (18)O1—C8—C13—C12175.61 (14)
C5—C6—C7—C20.2 (3)C11—C12—C13—C80.5 (3)
C1—O1—C8—C1395.67 (17)

Experimental details

Crystal data
Chemical formulaC15H14O2
Mr226.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.9813 (2), 14.3260 (3), 11.0932 (2)
β (°) 94.028 (2)
V3)1265.26 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.38 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.965, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
28657, 2471, 2056
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.134, 1.08
No. of reflections2471
No. of parameters156
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship. MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds