organic compounds
2,4-Dimethylphenyl benzoate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The 15H14O2, resembles those of 4-methylphenyl benzoate, 2,3-dimethylphenyl benzoate and other aryl benzoates, with similar bond parameters. The central –O—C—O– group in 24DMPBA makes dihedral angles of 85.81 (5) and 5.71 (13)°, respectively, with the benzoyl and phenyl rings, while the two aromatic rings form a dihedral angle of 80.25 (5)°. The molecules are packed with their axes parallel to the a-axis direction.
of the title compound (24DMPBA), CExperimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808017480/ci2614sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808017480/ci2614Isup2.hkl
The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.
H atoms were placed in calculated positions and treated as riding with C-H = 0.93Å (aromatic) or 0.96Å (methyl), and Uiso(H) = 1.2 Ueq(CH) and 1.5Ueq(CH3). The methyl groups (C14,C15) are disordered over two different orientations. The occupancy factor for the major orientation refined to 0.56 (3) for the C14-methyl group and 0.67 (3) for the C15-methyl group.
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).C15H14O2 | F(000) = 480 |
Mr = 226.26 | Dx = 1.188 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 12993 reflections |
a = 7.9813 (2) Å | θ = 3.2–29.3° |
b = 14.3260 (3) Å | µ = 0.08 mm−1 |
c = 11.0932 (2) Å | T = 295 K |
β = 94.028 (2)° | Block, colourless |
V = 1265.26 (5) Å3 | 0.48 × 0.38 × 0.21 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer | 2471 independent reflections |
Graphite monochromator | 2056 reflections with I > 2σ(I) |
Detector resolution: 10.434 pixels mm-1 | Rint = 0.031 |
ω scans with κ offsets | θmax = 26.0°, θmin = 5.9° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −9→9 |
Tmin = 0.965, Tmax = 0.987 | k = −17→17 |
28657 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2483P] where P = (Fo2 + 2Fc2)/3 |
2471 reflections | (Δ/σ)max = 0.001 |
156 parameters | Δρmax = 0.16 e Å−3 |
4 restraints | Δρmin = −0.15 e Å−3 |
C15H14O2 | V = 1265.26 (5) Å3 |
Mr = 226.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.9813 (2) Å | µ = 0.08 mm−1 |
b = 14.3260 (3) Å | T = 295 K |
c = 11.0932 (2) Å | 0.48 × 0.38 × 0.21 mm |
β = 94.028 (2)° |
Oxford Diffraction Xcalibur diffractometer | 2471 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2056 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.987 | Rint = 0.031 |
28657 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 4 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.16 e Å−3 |
2471 reflections | Δρmin = −0.15 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.77410 (13) | 0.30501 (7) | 0.43628 (10) | 0.0642 (3) | |
O2 | 0.56045 (16) | 0.31504 (8) | 0.29564 (11) | 0.0795 (4) | |
C1 | 0.65706 (18) | 0.35245 (10) | 0.36678 (13) | 0.0540 (4) | |
C2 | 0.66645 (18) | 0.45392 (10) | 0.38934 (13) | 0.0529 (4) | |
C3 | 0.5646 (2) | 0.51221 (12) | 0.31812 (17) | 0.0750 (5) | |
H3 | 0.4919 | 0.4871 | 0.2574 | 0.09* | |
C4 | 0.5690 (3) | 0.60709 (14) | 0.3358 (2) | 0.0901 (6) | |
H4 | 0.5004 | 0.6458 | 0.2865 | 0.108* | |
C5 | 0.6720 (3) | 0.64395 (12) | 0.4237 (3) | 0.0912 (7) | |
H5 | 0.6748 | 0.7082 | 0.4353 | 0.109* | |
C6 | 0.7731 (3) | 0.58741 (14) | 0.4966 (2) | 0.0971 (7) | |
H6 | 0.8437 | 0.6134 | 0.5579 | 0.116* | |
C7 | 0.7711 (2) | 0.49201 (12) | 0.47963 (18) | 0.0738 (5) | |
H7 | 0.8402 | 0.4537 | 0.5292 | 0.089* | |
C8 | 0.77716 (18) | 0.20698 (10) | 0.42443 (13) | 0.0552 (4) | |
C9 | 0.8731 (2) | 0.16674 (11) | 0.34018 (14) | 0.0623 (4) | |
C10 | 0.8778 (2) | 0.06901 (12) | 0.33938 (17) | 0.0732 (5) | |
H10 | 0.9403 | 0.0392 | 0.2831 | 0.088* | |
C11 | 0.7940 (2) | 0.01520 (12) | 0.41818 (18) | 0.0759 (5) | |
C12 | 0.7035 (2) | 0.05916 (12) | 0.50064 (19) | 0.0786 (5) | |
H12 | 0.6473 | 0.0239 | 0.5555 | 0.094* | |
C13 | 0.6936 (2) | 0.15527 (12) | 0.50441 (16) | 0.0682 (4) | |
H13 | 0.6306 | 0.1845 | 0.5609 | 0.082* | |
C14 | 0.9689 (3) | 0.22412 (17) | 0.2560 (2) | 0.0964 (6) | |
H14A | 0.9884 | 0.1881 | 0.1854 | 0.145* | 0.56 (3) |
H14B | 1.0745 | 0.2423 | 0.2958 | 0.145* | 0.56 (3) |
H14C | 0.9052 | 0.2789 | 0.2328 | 0.145* | 0.56 (3) |
H14D | 0.9904 | 0.2847 | 0.2906 | 0.145* | 0.44 (3) |
H14E | 0.9042 | 0.2305 | 0.1802 | 0.145* | 0.44 (3) |
H14F | 1.0735 | 0.1939 | 0.2432 | 0.145* | 0.44 (3) |
C15 | 0.8030 (3) | −0.09032 (13) | 0.4133 (3) | 0.1179 (10) | |
H15A | 0.771 | −0.1159 | 0.4884 | 0.177* | 0.67 (3) |
H15B | 0.9157 | −0.1092 | 0.4002 | 0.177* | 0.67 (3) |
H15C | 0.7279 | −0.1128 | 0.3484 | 0.177* | 0.67 (3) |
H15D | 0.8387 | −0.1094 | 0.3362 | 0.177* | 0.33 (3) |
H15E | 0.6941 | −0.1161 | 0.4244 | 0.177* | 0.33 (3) |
H15F | 0.8818 | −0.1124 | 0.4762 | 0.177* | 0.33 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0729 (7) | 0.0412 (5) | 0.0751 (7) | 0.0067 (5) | −0.0183 (5) | −0.0071 (5) |
O2 | 0.0873 (8) | 0.0582 (7) | 0.0878 (8) | 0.0055 (6) | −0.0314 (7) | −0.0134 (6) |
C1 | 0.0571 (8) | 0.0488 (8) | 0.0553 (8) | 0.0039 (6) | −0.0018 (7) | −0.0026 (6) |
C2 | 0.0542 (8) | 0.0450 (7) | 0.0601 (8) | 0.0017 (6) | 0.0072 (6) | 0.0017 (6) |
C3 | 0.0791 (11) | 0.0585 (10) | 0.0857 (12) | 0.0119 (8) | −0.0066 (9) | 0.0087 (8) |
C4 | 0.0900 (14) | 0.0574 (11) | 0.1237 (17) | 0.0170 (10) | 0.0124 (13) | 0.0235 (11) |
C5 | 0.0875 (13) | 0.0391 (9) | 0.151 (2) | −0.0004 (9) | 0.0357 (14) | 0.0035 (11) |
C6 | 0.1008 (15) | 0.0578 (11) | 0.1305 (18) | −0.0126 (10) | −0.0065 (13) | −0.0219 (11) |
C7 | 0.0802 (11) | 0.0480 (9) | 0.0906 (12) | −0.0014 (8) | −0.0120 (9) | −0.0058 (8) |
C8 | 0.0599 (9) | 0.0420 (7) | 0.0614 (9) | 0.0049 (6) | −0.0113 (7) | −0.0057 (6) |
C9 | 0.0636 (9) | 0.0620 (9) | 0.0598 (9) | 0.0067 (7) | −0.0077 (7) | −0.0058 (7) |
C10 | 0.0728 (11) | 0.0665 (10) | 0.0775 (11) | 0.0210 (8) | −0.0152 (8) | −0.0246 (8) |
C11 | 0.0760 (11) | 0.0466 (9) | 0.0998 (13) | 0.0052 (7) | −0.0321 (9) | −0.0061 (8) |
C12 | 0.0782 (12) | 0.0592 (10) | 0.0962 (13) | −0.0084 (8) | −0.0077 (9) | 0.0118 (9) |
C13 | 0.0691 (10) | 0.0601 (10) | 0.0752 (11) | 0.0040 (8) | 0.0039 (8) | −0.0023 (8) |
C14 | 0.1010 (15) | 0.1049 (16) | 0.0852 (13) | 0.0047 (12) | 0.0189 (11) | 0.0038 (12) |
C15 | 0.1271 (19) | 0.0463 (10) | 0.170 (2) | 0.0118 (10) | −0.0637 (18) | −0.0131 (12) |
O1—C1 | 1.3519 (17) | C10—C11 | 1.374 (3) |
O1—C8 | 1.4108 (17) | C10—H10 | 0.93 |
O2—C1 | 1.1913 (17) | C11—C12 | 1.359 (3) |
C1—C2 | 1.476 (2) | C11—C15 | 1.514 (2) |
C2—C7 | 1.371 (2) | C12—C13 | 1.380 (2) |
C2—C3 | 1.376 (2) | C12—H12 | 0.93 |
C3—C4 | 1.373 (3) | C13—H13 | 0.93 |
C3—H3 | 0.93 | C14—H14A | 0.96 |
C4—C5 | 1.339 (3) | C14—H14B | 0.96 |
C4—H4 | 0.93 | C14—H14C | 0.96 |
C5—C6 | 1.367 (3) | C14—H14D | 0.96 |
C5—H5 | 0.93 | C14—H14E | 0.96 |
C6—C7 | 1.379 (3) | C14—H14F | 0.96 |
C6—H6 | 0.93 | C15—H15A | 0.96 |
C7—H7 | 0.93 | C15—H15B | 0.96 |
C8—C13 | 1.365 (2) | C15—H15C | 0.96 |
C8—C9 | 1.376 (2) | C15—H15D | 0.96 |
C9—C10 | 1.401 (2) | C15—H15E | 0.96 |
C9—C14 | 1.494 (3) | C15—H15F | 0.96 |
C1—O1—C8 | 117.59 (11) | C9—C14—H14B | 109.5 |
O2—C1—O1 | 122.74 (14) | H14A—C14—H14B | 109.5 |
O2—C1—C2 | 125.32 (14) | C9—C14—H14C | 109.5 |
O1—C1—C2 | 111.93 (12) | H14A—C14—H14C | 109.5 |
C7—C2—C3 | 118.87 (15) | H14B—C14—H14C | 109.5 |
C7—C2—C1 | 122.47 (14) | C9—C14—H14D | 109.5 |
C3—C2—C1 | 118.65 (14) | H14A—C14—H14D | 141.1 |
C4—C3—C2 | 120.70 (19) | H14B—C14—H14D | 56.3 |
C4—C3—H3 | 119.7 | H14C—C14—H14D | 56.3 |
C2—C3—H3 | 119.7 | C9—C14—H14E | 109.5 |
C5—C4—C3 | 120.17 (19) | H14A—C14—H14E | 56.3 |
C5—C4—H4 | 119.9 | H14B—C14—H14E | 141.1 |
C3—C4—H4 | 119.9 | H14C—C14—H14E | 56.3 |
C4—C5—C6 | 120.23 (17) | H14D—C14—H14E | 109.5 |
C4—C5—H5 | 119.9 | C9—C14—H14F | 109.5 |
C6—C5—H5 | 119.9 | H14A—C14—H14F | 56.3 |
C5—C6—C7 | 120.4 (2) | H14B—C14—H14F | 56.3 |
C5—C6—H6 | 119.8 | H14C—C14—H14F | 141.1 |
C7—C6—H6 | 119.8 | H14D—C14—H14F | 109.5 |
C2—C7—C6 | 119.64 (18) | H14E—C14—H14F | 109.5 |
C2—C7—H7 | 120.2 | C11—C15—H15A | 109.5 |
C6—C7—H7 | 120.2 | C11—C15—H15B | 109.5 |
C13—C8—C9 | 122.33 (15) | H15A—C15—H15B | 109.5 |
C13—C8—O1 | 117.84 (14) | C11—C15—H15C | 109.5 |
C9—C8—O1 | 119.64 (14) | H15A—C15—H15C | 109.5 |
C8—C9—C10 | 116.07 (16) | H15B—C15—H15C | 109.5 |
C8—C9—C14 | 121.84 (16) | C11—C15—H15D | 109.5 |
C10—C9—C14 | 122.09 (17) | H15A—C15—H15D | 141.1 |
C11—C10—C9 | 122.86 (16) | H15B—C15—H15D | 56.3 |
C11—C10—H10 | 118.6 | H15C—C15—H15D | 56.3 |
C9—C10—H10 | 118.6 | C11—C15—H15E | 109.5 |
C12—C11—C10 | 118.26 (16) | H15A—C15—H15E | 56.3 |
C12—C11—C15 | 121.0 (2) | H15B—C15—H15E | 141.1 |
C10—C11—C15 | 120.7 (2) | H15C—C15—H15E | 56.3 |
C11—C12—C13 | 121.14 (18) | H15D—C15—H15E | 109.5 |
C11—C12—H12 | 119.4 | C11—C15—H15F | 109.5 |
C13—C12—H12 | 119.4 | H15A—C15—H15F | 56.3 |
C8—C13—C12 | 119.34 (17) | H15B—C15—H15F | 56.3 |
C8—C13—H13 | 120.3 | H15C—C15—H15F | 141.1 |
C12—C13—H13 | 120.3 | H15D—C15—H15F | 109.5 |
C9—C14—H14A | 109.5 | H15E—C15—H15F | 109.5 |
C8—O1—C1—O2 | −1.4 (2) | C1—O1—C8—C9 | 89.23 (17) |
C8—O1—C1—C2 | 179.25 (12) | C13—C8—C9—C10 | 1.2 (2) |
O2—C1—C2—C7 | 174.36 (17) | O1—C8—C9—C10 | 176.08 (13) |
O1—C1—C2—C7 | −6.4 (2) | C13—C8—C9—C14 | −177.81 (16) |
O2—C1—C2—C3 | −4.7 (2) | O1—C8—C9—C14 | −2.9 (2) |
O1—C1—C2—C3 | 174.61 (14) | C8—C9—C10—C11 | −0.7 (2) |
C7—C2—C3—C4 | 0.9 (3) | C14—C9—C10—C11 | 178.30 (17) |
C1—C2—C3—C4 | −179.98 (17) | C9—C10—C11—C12 | −0.3 (3) |
C2—C3—C4—C5 | −0.6 (3) | C9—C10—C11—C15 | 179.91 (16) |
C3—C4—C5—C6 | −0.1 (3) | C10—C11—C12—C13 | 0.9 (3) |
C4—C5—C6—C7 | 0.5 (3) | C15—C11—C12—C13 | −179.29 (17) |
C3—C2—C7—C6 | −0.5 (3) | C9—C8—C13—C12 | −0.7 (2) |
C1—C2—C7—C6 | −179.57 (18) | O1—C8—C13—C12 | −175.61 (14) |
C5—C6—C7—C2 | −0.2 (3) | C11—C12—C13—C8 | −0.5 (3) |
C1—O1—C8—C13 | −95.67 (17) |
Experimental details
Crystal data | |
Chemical formula | C15H14O2 |
Mr | 226.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.9813 (2), 14.3260 (3), 11.0932 (2) |
β (°) | 94.028 (2) |
V (Å3) | 1265.26 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.48 × 0.38 × 0.21 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.965, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28657, 2471, 2056 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.134, 1.08 |
No. of reflections | 2471 |
No. of parameters | 156 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.15 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship. MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.
References
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o844. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press. Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, as part of a study of the substituent effects on the solid state geometries of aryl benzoates (Gowda et al., 2007, 2008), the structure of 2,4-dimethylphenyl benzoate (24DMPBA) has been determined. The structure of 24DMPBA (Fig. 1) is similar to those of 4-methylphenyl benzoate (4MePBA)(Gowda et al., 2007), 2,3-dimethylphenyl benzoate (23DMPBA) (Gowda et al., 2008) and other aryl benzoates. The central –O—C—O– group in 24DMPBA makes a dihedral angle of 85.81 (5)° with the benzoyl phenyl ring and 5.71 (13)° with the phenyl ring. The two aromatic rings in 24DMPBA form a dihedral angle of 80.25 (5)°. The bond parameters in 24DMPBA are similar to those in 4MePBA, 23DMPBA and other aryl benzoates. Part of the crystal structure of the title compound as viewed along the a axis is shown in Fig.2.