metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m975-m976

Chlorido(di­methyl sulfoxide)(pyridine-2-thiol­ato N-oxide-κ2S,O)platinum(II)

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 11 June 2008; accepted 24 June 2008; online 28 June 2008)

The asymmetric unit of the title compound, [Pt(C5H4NOS)Cl(C2H6OS)], contains two independent complex mol­ecules having similar geometries. Each PtII atom is four-coordinated in a distorted square-planar geometry by S and O atoms of one pyridine N-oxide ligand, the S atom of one dimethyl sulfoxide mol­ecule and one terminal Cl ion. The mol­ecules are linked into a three-dimensional framework by C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

For biological activities of platinum, see: Weiss & Christian (1993[Weiss, R. B. & Christian, M. C. (1993). Drugs, 46, 360-377.]); Loehrer et al. (1988[Loehrer, P. J., William, S. D. & Einhorn, L. H. (1988). J. Natl Cancer Inst. 80, 1373-1376.]); For biological activities of N-oxide derivatives, see: Bovin et al. (1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr. 129, 145-150.]); Katsuyuki et al. (1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Leonard et al. (1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]); Lobana & Bhatia (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Symons & West (1985[Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379-381.]). For related literature, see: Jebas et al. (2005[Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677-o2678.]); Ravindran et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]); Dyksterhouse et al. (2000[Dyksterhouse, R. M., Howell, B. A. & Squattrito, P. J. (2000). Acta Cryst. C56, 64-66.]); Ohms et al. (1982[Ohms, U., Guth, H., Kutoglu, A. & Scheringer, C. (1982). Acta Cryst. B38, 831-834.]); Ravindran et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C5H4NOS)Cl(C2H6OS)]

  • Mr = 434.82

  • Triclinic, [P \overline 1]

  • a = 10.2407 (5) Å

  • b = 10.9703 (5) Å

  • c = 10.9772 (6) Å

  • α = 82.950 (1)°

  • β = 76.720 (1)°

  • γ = 76.554 (1)°

  • V = 1164.21 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.61 mm−1

  • T = 173 (2) K

  • 0.47 × 0.31 × 0.15 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: Gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.5, Tmax = 1.0

  • 22889 measured reflections

  • 5542 independent reflections

  • 5032 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.03

  • 5542 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 5.99 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—O7 2.020 (4)
Pt1—S2 2.1826 (13)
Pt1—S1 2.2495 (15)
Pt1—Cl1 2.3461 (13)
Pt2—O17 2.005 (4)
Pt2—S4 2.1850 (14)
Pt2—S3 2.2543 (14)
Pt2—Cl2 2.3402 (14)
O7—Pt1—S2 179.05 (12)
O7—Pt1—S1 86.29 (11)
S2—Pt1—S1 93.15 (5)
O7—Pt1—Cl1 89.02 (11)
S2—Pt1—Cl1 91.57 (5)
S1—Pt1—Cl1 174.53 (5)
O17—Pt2—S4 179.35 (11)
O17—Pt2—S3 86.41 (11)
S4—Pt2—S3 94.02 (5)
O17—Pt2—Cl2 87.69 (11)
S4—Pt2—Cl2 91.89 (5)
S3—Pt2—Cl2 174.07 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O17i 0.98 2.43 3.351 (8) 157
C9—H9B⋯Cl1 0.98 2.73 3.350 (6) 121
C10—H10A⋯Cl1ii 0.98 2.73 3.601 (7) 149
C13—H13⋯O7iii 0.95 2.37 3.268 (8) 158
C15—H15⋯O8iv 0.95 2.39 3.271 (7) 155
C19—H19A⋯O8v 0.98 2.54 3.456 (7) 155
C20—H20A⋯O18vi 0.98 2.49 3.460 (8) 172
C20—H20B⋯Cl2 0.98 2.75 3.366 (7) 122
Symmetry codes: (i) x, y+1, z-1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z+1; (iv) x, y-1, z+1; (v) x, y-1, z; (vi) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The platinum complex, cis-diamminedichloroplatinum(II) (cisplatin) is one of the most widely used antitumor drugs in the world (Weiss & Christian, 1993; Loehrer et al., 1988). N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of the metal platinum and N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The asymmetric unit of the title compound contains two independent complex molecules having similar geometries (Fig. 1 and Table 1). Each PtII atom is four-coordinated in a distorted square-planar geometry by S and O atoms of one pyridine N-oxide ligand, S atom of one dimethyl sulfoxide molecule and one terminal Cl- ion. The average Pt—O [2.013 (4) Å] and Pt—S [2.218 (14) Å] distances are comparable with the values reported in the literature (Dyksterhouse et al., 2000; Ravindran et al., 2008). The mean C—S bond distance [1.755 (6) Å] is slightly longer than that reported for the uncoordinated thione molecule [1.692 (2)–1.698 (2) Å; Ohms et al.,1982]. The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for N-oxides (Allen et al., 1987). The dihedral angle between the two pyridine rings is 26.0 (3)°. The dihedral angle between the Pt1/S1/C1/N6/O7 and N6/C1-C5 planes is 0.6 (2)° and that between the Pt2/S3/C11/N16/O17 and N16/C11-C15 planes is 4.4 (2) Å, respectively.

The crystal packing is stabilized by intermolecular C—H··· O and C—H···Cl hydrogen bonding (Fig. 2).

Related literature top

For biological activities of platinum, see: Weiss & Christian (1993); Loehrer et al. (1988); For biological activities of N-oxide derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For related literature, see: Jebas et al. (2005); Ravindran et al. (2008); Dyksterhouse et al. (2000); Ohms et al.(1982); Ravindran et al.(2008). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-benzylsulfanyl pyridine N-oxide, (0.219 g 1 mmol) and potassium tetrachloroplatinate(II) (0.415 g, 1 mmol) in water (20 ml) and methanol (20 ml) was heated at 333 K with stirring for 30 min. A yellow colour mass formed was dissolved in DMSO (10 ml) and kept at 278 K for a week. The compound formed was filtered off and dried. The compound was dissolved in chloroform and allowed to undergo slow evaporation. Fine crystals were obtained after a week.

Refinement top

H atoms were positioned geometrically [C-H = 0.95 (aromatic) or 0.98 Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C). A rotating group model was used for the methyl groups. The highest residual density peak is located 1.15 Å from atom Pt2 and the deepest hole is located 0.92 Å from atom Pt1.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Chlorido(dimethyl sulfoxide)(pyridine-2-thiolato N-oxide-κ2S,O)platinum(II) top
Crystal data top
[Pt(C5H4NOS)Cl(C2H6OS)]Z = 4
Mr = 434.82F(000) = 808
Triclinic, P1Dx = 2.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2407 (5) ÅCell parameters from 9909 reflections
b = 10.9703 (5) Åθ = 2.5–27.8°
c = 10.9772 (6) ŵ = 12.61 mm1
α = 82.950 (1)°T = 173 K
β = 76.720 (1)°Plate, colourless
γ = 76.554 (1)°0.47 × 0.31 × 0.15 mm
V = 1164.21 (10) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5542 independent reflections
Radiation source: sealed Tube5032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 27.9°, θmin = 1.9°
Absorption correction: gaussian
(Coppens, 1970)
h = 1313
Tmin = 0.5, Tmax = 1.0k = 1414
22889 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0265P)2 + 7.1392P]
where P = (Fo2 + 2Fc2)/3
5542 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 5.99 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Pt(C5H4NOS)Cl(C2H6OS)]γ = 76.554 (1)°
Mr = 434.82V = 1164.21 (10) Å3
Triclinic, P1Z = 4
a = 10.2407 (5) ÅMo Kα radiation
b = 10.9703 (5) ŵ = 12.61 mm1
c = 10.9772 (6) ÅT = 173 K
α = 82.950 (1)°0.47 × 0.31 × 0.15 mm
β = 76.720 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5542 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
5032 reflections with I > 2σ(I)
Tmin = 0.5, Tmax = 1.0Rint = 0.034
22889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.03Δρmax = 5.99 e Å3
5542 reflectionsΔρmin = 1.02 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.659125 (19)0.633021 (18)0.106453 (19)0.02604 (6)
Cl10.77432 (14)0.58127 (13)0.09729 (13)0.0340 (3)
S10.55837 (15)0.66420 (15)0.30825 (14)0.0370 (3)
S20.48807 (13)0.75691 (12)0.03633 (12)0.0275 (3)
C10.6869 (6)0.5686 (5)0.3749 (5)0.0326 (11)
C20.6782 (7)0.5500 (6)0.5051 (6)0.0412 (14)
H20.59830.58970.56080.049*
C30.7857 (7)0.4741 (6)0.5520 (6)0.0435 (14)
H30.78050.46220.64010.052*
C40.9021 (7)0.4147 (6)0.4701 (6)0.0399 (13)
H40.97630.36180.50200.048*
C50.9085 (6)0.4330 (5)0.3449 (6)0.0343 (12)
H50.98750.39310.28840.041*
N60.8014 (5)0.5089 (4)0.2998 (4)0.0299 (9)
O70.8176 (4)0.5207 (4)0.1729 (4)0.0319 (8)
O80.3857 (4)0.8369 (4)0.1274 (4)0.0389 (10)
C90.5470 (6)0.8558 (5)0.0944 (6)0.0355 (12)
H9A0.46860.90500.12820.053*
H9B0.61030.80440.15910.053*
H9C0.59460.91270.06820.053*
C100.4004 (6)0.6700 (6)0.0310 (6)0.0373 (13)
H10A0.35680.61430.03440.056*
H10B0.46590.61970.09550.056*
H10C0.33000.72800.06930.056*
Pt20.23052 (2)0.015106 (18)0.666962 (18)0.02707 (6)
Cl20.36326 (16)0.21985 (13)0.65722 (14)0.0391 (3)
S30.10091 (15)0.17934 (13)0.69804 (14)0.0340 (3)
S40.23267 (14)0.00092 (13)0.46616 (13)0.0307 (3)
C110.0802 (5)0.1703 (5)0.8589 (5)0.0299 (11)
C120.0046 (6)0.2637 (5)0.9339 (6)0.0358 (12)
H120.05280.33750.89550.043*
C130.0197 (6)0.2510 (6)1.0616 (6)0.0384 (13)
H130.07840.31501.11160.046*
C140.0521 (6)0.1429 (6)1.1175 (6)0.0376 (13)
H140.04320.13311.20600.045*
C150.1349 (6)0.0516 (5)1.0449 (5)0.0314 (11)
H150.18390.02241.08240.038*
N160.1469 (4)0.0670 (4)0.9177 (4)0.0272 (9)
O170.2309 (4)0.0305 (4)0.8508 (4)0.0315 (8)
O180.1467 (5)0.1149 (4)0.4162 (4)0.0430 (10)
C190.4043 (6)0.0135 (6)0.3803 (5)0.0359 (12)
H19A0.40950.03300.29430.054*
H19B0.46450.08120.42060.054*
H19C0.43360.06570.37840.054*
C200.1896 (6)0.1328 (6)0.4240 (6)0.0377 (13)
H20A0.09480.13590.46560.057*
H20B0.25170.20880.45020.057*
H20C0.19850.12790.33280.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02424 (10)0.02261 (10)0.02981 (11)0.00326 (7)0.00512 (7)0.00053 (7)
Cl10.0327 (6)0.0314 (6)0.0334 (7)0.0040 (5)0.0012 (5)0.0018 (5)
S10.0320 (7)0.0393 (8)0.0333 (7)0.0038 (6)0.0052 (5)0.0030 (6)
S20.0264 (6)0.0248 (6)0.0306 (6)0.0041 (5)0.0065 (5)0.0000 (5)
C10.033 (3)0.028 (3)0.035 (3)0.006 (2)0.005 (2)0.001 (2)
C20.044 (3)0.042 (3)0.035 (3)0.006 (3)0.009 (3)0.001 (3)
C30.051 (4)0.046 (4)0.037 (3)0.016 (3)0.015 (3)0.007 (3)
C40.042 (3)0.036 (3)0.046 (3)0.012 (3)0.020 (3)0.004 (3)
C50.032 (3)0.027 (3)0.047 (3)0.006 (2)0.015 (2)0.000 (2)
N60.031 (2)0.025 (2)0.033 (2)0.0056 (18)0.0087 (18)0.0007 (18)
O70.0277 (18)0.031 (2)0.033 (2)0.0014 (15)0.0066 (15)0.0017 (16)
O80.036 (2)0.038 (2)0.037 (2)0.0083 (17)0.0090 (17)0.0050 (17)
C90.034 (3)0.025 (3)0.044 (3)0.006 (2)0.007 (2)0.008 (2)
C100.035 (3)0.033 (3)0.047 (3)0.010 (2)0.015 (3)0.003 (2)
Pt20.02632 (10)0.02645 (11)0.02760 (11)0.00455 (8)0.00562 (7)0.00071 (7)
Cl20.0442 (8)0.0317 (7)0.0354 (7)0.0031 (6)0.0071 (6)0.0041 (5)
S30.0385 (7)0.0286 (7)0.0342 (7)0.0022 (5)0.0130 (6)0.0009 (5)
S40.0302 (6)0.0327 (7)0.0292 (6)0.0079 (5)0.0064 (5)0.0001 (5)
C110.027 (2)0.026 (3)0.038 (3)0.006 (2)0.009 (2)0.003 (2)
C120.032 (3)0.026 (3)0.050 (3)0.003 (2)0.012 (2)0.009 (2)
C130.034 (3)0.036 (3)0.046 (3)0.001 (2)0.009 (2)0.016 (3)
C140.034 (3)0.042 (3)0.037 (3)0.008 (2)0.005 (2)0.010 (2)
C150.029 (3)0.033 (3)0.033 (3)0.007 (2)0.009 (2)0.000 (2)
N160.023 (2)0.027 (2)0.031 (2)0.0025 (17)0.0061 (17)0.0047 (17)
O170.0299 (19)0.0267 (19)0.035 (2)0.0031 (15)0.0077 (15)0.0055 (15)
O180.043 (2)0.047 (3)0.036 (2)0.0002 (19)0.0122 (18)0.0021 (19)
C190.034 (3)0.043 (3)0.032 (3)0.015 (2)0.003 (2)0.003 (2)
C200.037 (3)0.045 (3)0.038 (3)0.018 (3)0.009 (2)0.007 (3)
Geometric parameters (Å, º) top
Pt1—O72.020 (4)Pt2—O172.005 (4)
Pt1—S22.1826 (13)Pt2—S42.1850 (14)
Pt1—S12.2495 (15)Pt2—S32.2543 (14)
Pt1—Cl12.3461 (13)Pt2—Cl22.3402 (14)
S1—C11.727 (6)S3—C111.723 (6)
S2—O81.475 (4)S4—O181.477 (4)
S2—C91.767 (6)S4—C201.767 (6)
S2—C101.771 (6)S4—C191.774 (6)
C1—N61.346 (7)C11—N161.353 (7)
C1—C21.403 (8)C11—C121.394 (8)
C2—C31.379 (9)C12—C131.368 (9)
C2—H20.95C12—H120.95
C3—C41.394 (10)C13—C141.396 (9)
C3—H30.95C13—H130.95
C4—C51.353 (9)C14—C151.359 (8)
C4—H40.95C14—H140.95
C5—N61.366 (7)C15—N161.366 (7)
C5—H50.95C15—H150.95
N6—O71.358 (6)N16—O171.378 (5)
C9—H9A0.98C19—H19A0.98
C9—H9B0.98C19—H19B0.98
C9—H9C0.98C19—H19C0.98
C10—H10A0.98C20—H20A0.98
C10—H10B0.98C20—H20B0.98
C10—H10C0.98C20—H20C0.98
O7—Pt1—S2179.05 (12)O17—Pt2—S4179.35 (11)
O7—Pt1—S186.29 (11)O17—Pt2—S386.41 (11)
S2—Pt1—S193.15 (5)S4—Pt2—S394.02 (5)
O7—Pt1—Cl189.02 (11)O17—Pt2—Cl287.69 (11)
S2—Pt1—Cl191.57 (5)S4—Pt2—Cl291.89 (5)
S1—Pt1—Cl1174.53 (5)S3—Pt2—Cl2174.07 (5)
C1—S1—Pt197.4 (2)C11—S3—Pt297.42 (19)
O8—S2—C9107.7 (3)O18—S4—C20108.9 (3)
O8—S2—C10108.1 (3)O18—S4—C19108.9 (3)
C9—S2—C10101.3 (3)C20—S4—C19101.1 (3)
O8—S2—Pt1116.54 (17)O18—S4—Pt2117.14 (19)
C9—S2—Pt1111.3 (2)C20—S4—Pt2110.2 (2)
C10—S2—Pt1110.8 (2)C19—S4—Pt2109.4 (2)
N6—C1—C2117.9 (5)N16—C11—C12117.2 (5)
N6—C1—S1119.2 (4)N16—C11—S3119.3 (4)
C2—C1—S1122.9 (5)C12—C11—S3123.5 (4)
C3—C2—C1119.9 (6)C13—C12—C11121.3 (6)
C3—C2—H2120.1C13—C12—H12119.4
C1—C2—H2120.1C11—C12—H12119.4
C2—C3—C4119.9 (6)C12—C13—C14119.2 (5)
C2—C3—H3120.0C12—C13—H13120.4
C4—C3—H3120.0C14—C13—H13120.4
C5—C4—C3119.4 (6)C15—C14—C13119.8 (6)
C5—C4—H4120.3C15—C14—H14120.1
C3—C4—H4120.3C13—C14—H14120.1
C4—C5—N6120.0 (6)C14—C15—N16119.4 (5)
C4—C5—H5120.0C14—C15—H15120.3
N6—C5—H5120.0N16—C15—H15120.3
C1—N6—O7121.7 (4)C11—N16—C15123.0 (5)
C1—N6—C5122.9 (5)C11—N16—O17120.9 (4)
O7—N6—C5115.4 (5)C15—N16—O17116.0 (4)
N6—O7—Pt1115.3 (3)N16—O17—Pt2115.4 (3)
S2—C9—H9A109.5S4—C19—H19A109.5
S2—C9—H9B109.5S4—C19—H19B109.5
H9A—C9—H9B109.5H19A—C19—H19B109.5
S2—C9—H9C109.5S4—C19—H19C109.5
H9A—C9—H9C109.5H19A—C19—H19C109.5
H9B—C9—H9C109.5H19B—C19—H19C109.5
S2—C10—H10A109.5S4—C20—H20A109.5
S2—C10—H10B109.5S4—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
S2—C10—H10C109.5S4—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
O7—Pt1—S1—C10.8 (2)O17—Pt2—S3—C115.7 (2)
S2—Pt1—S1—C1180.0 (2)S4—Pt2—S3—C11174.82 (19)
S1—Pt1—S2—O812.4 (2)S3—Pt2—S4—O185.8 (2)
Cl1—Pt1—S2—O8170.4 (2)Cl2—Pt2—S4—O18173.6 (2)
S1—Pt1—S2—C9136.5 (2)S3—Pt2—S4—C20131.0 (2)
Cl1—Pt1—S2—C946.3 (2)Cl2—Pt2—S4—C2048.5 (2)
S1—Pt1—S2—C10111.7 (2)S3—Pt2—S4—C19118.7 (2)
Cl1—Pt1—S2—C1065.5 (2)Cl2—Pt2—S4—C1961.8 (2)
Pt1—S1—C1—N61.1 (5)Pt2—S3—C11—N164.8 (4)
Pt1—S1—C1—C2179.1 (5)Pt2—S3—C11—C12174.0 (5)
N6—C1—C2—C30.9 (9)N16—C11—C12—C130.1 (8)
S1—C1—C2—C3178.9 (5)S3—C11—C12—C13178.7 (5)
C1—C2—C3—C40.8 (10)C11—C12—C13—C140.5 (9)
C2—C3—C4—C50.4 (10)C12—C13—C14—C150.5 (9)
C3—C4—C5—N60.1 (9)C13—C14—C15—N160.2 (9)
C2—C1—N6—O7179.4 (5)C12—C11—N16—C150.3 (8)
S1—C1—N6—O70.9 (7)S3—C11—N16—C15179.1 (4)
C2—C1—N6—C50.7 (8)C12—C11—N16—O17178.9 (5)
S1—C1—N6—C5179.1 (4)S3—C11—N16—O170.0 (7)
C4—C5—N6—C10.3 (9)C14—C15—N16—C110.2 (8)
C4—C5—N6—O7179.7 (5)C14—C15—N16—O17178.9 (5)
C1—N6—O7—Pt10.0 (6)C11—N16—O17—Pt25.9 (6)
C5—N6—O7—Pt1180.0 (4)C15—N16—O17—Pt2173.3 (4)
S1—Pt1—O7—N60.6 (3)S3—Pt2—O17—N167.0 (3)
Cl1—Pt1—O7—N6176.6 (3)Cl2—Pt2—O17—N16172.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O17i0.982.433.351 (8)157
C9—H9B···Cl10.982.733.350 (6)121
C10—H10A···Cl1ii0.982.733.601 (7)149
C13—H13···O7iii0.952.373.268 (8)158
C15—H15···O8iv0.952.393.271 (7)155
C19—H19A···O8v0.982.543.456 (7)155
C20—H20A···O18vi0.982.493.460 (8)172
C20—H20B···Cl20.982.753.366 (7)122
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+1, z; (iii) x1, y, z+1; (iv) x, y1, z+1; (v) x, y1, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Pt(C5H4NOS)Cl(C2H6OS)]
Mr434.82
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.2407 (5), 10.9703 (5), 10.9772 (6)
α, β, γ (°)82.950 (1), 76.720 (1), 76.554 (1)
V3)1164.21 (10)
Z4
Radiation typeMo Kα
µ (mm1)12.61
Crystal size (mm)0.47 × 0.31 × 0.15
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.5, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
22889, 5542, 5032
Rint0.034
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.03
No. of reflections5542
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)5.99, 1.02

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Pt1—O72.020 (4)Pt2—O172.005 (4)
Pt1—S22.1826 (13)Pt2—S42.1850 (14)
Pt1—S12.2495 (15)Pt2—S32.2543 (14)
Pt1—Cl12.3461 (13)Pt2—Cl22.3402 (14)
O7—Pt1—S2179.05 (12)O17—Pt2—S4179.35 (11)
O7—Pt1—S186.29 (11)O17—Pt2—S386.41 (11)
S2—Pt1—S193.15 (5)S4—Pt2—S394.02 (5)
O7—Pt1—Cl189.02 (11)O17—Pt2—Cl287.69 (11)
S2—Pt1—Cl191.57 (5)S4—Pt2—Cl291.89 (5)
S1—Pt1—Cl1174.53 (5)S3—Pt2—Cl2174.07 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O17i0.982.433.351 (8)157
C9—H9B···Cl10.982.733.350 (6)121
C10—H10A···Cl1ii0.982.733.601 (7)149
C13—H13···O7iii0.952.373.268 (8)158
C15—H15···O8iv0.952.393.271 (7)155
C19—H19A···O8v0.982.543.456 (7)155
C20—H20A···O18vi0.982.493.460 (8)172
C20—H20B···Cl20.982.753.366 (7)122
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+1, z; (iii) x1, y, z+1; (iv) x, y1, z+1; (v) x, y1, z; (vi) x, y, z+1.
 

Acknowledgements

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr. 129, 145–150.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDyksterhouse, R. M., Howell, B. A. & Squattrito, P. J. (2000). Acta Cryst. C56, 64–66.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationLoehrer, P. J., William, S. D. & Einhorn, L. H. (1988). J. Natl Cancer Inst. 80, 1373–1376.  CrossRef PubMed Web of Science Google Scholar
First citationOhms, U., Guth, H., Kutoglu, A. & Scheringer, C. (1982). Acta Cryst. B38, 831–834.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.  CrossRef Web of Science Google Scholar
First citationWeiss, R. B. & Christian, M. C. (1993). Drugs, 46, 360–377.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m975-m976
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds