organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3,5-di­chloro­phenyl)­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 June 2008; accepted 13 June 2008; online 19 June 2008)

The amide group in the structure of the title compound (N35DCP2CBA), C13H8Cl3NO, is trans-planar, similar to that observed in N-(3-chloro­phen­yl)benzamide, N-(3,5-dichloro­phen­yl)benzamide, 2-chloro-N-phenyl­benzamide and other benzanilides. The C=O bond in N35DCP2CBA is anti to the ortho-chloro substituent in the benzoyl ring. The amide group makes dihedral angles of 63.1 (12) and 31.1 (17)°, respectively, with the benzoyl and aniline benzene rings, while the dihedral angle between the two benzene rings is 32.1 (2)°. The mol­ecules are linked into chains along the b axis by N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]); Gowda, Foro et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1243.]); Gowda, Tokarčík et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl3NO

  • Mr = 300.55

  • Orthorhombic, P b c a

  • a = 14.699 (1) Å

  • b = 8.736 (1) Å

  • c = 20.445 (2) Å

  • V = 2625.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 299 (2) K

  • 0.38 × 0.14 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.781, Tmax = 0.960

  • 12954 measured reflections

  • 2686 independent reflections

  • 1288 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.230

  • S = 1.08

  • 2686 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.81 (5) 2.14 (5) 2.913 (5) 160 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(3,5-dichlorophenyl)-benzamide (N35DCP2CBA) has been determined to explore the effect of substituents on the structure of benzanilides (Gowda et al., 2003; Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008). The N—H and CO bonds in the amide group of N35DCP2CBA are trans to each other (Fig.1), similar to that observed in N-(3-chlorophenyl)-benzamide(N3CPBA) (Gowda, Tokarčík et al., 2008), N-(3,5-dichlorophenyl)-benzamide (N35DCPBA) (Gowda, Foro et al., 2008), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003) and other benzanilides. Further, the conformation of the CO bond in the structure of N35DCP2CBA is anti to the ortho-chloro substituent in the benzoyl ring, compared to the syn conformation observed in NP2CBA. The amide group –NHCO– makes dihedral angles of 63.1 (12)° and 31.1 (17)° with the benzoyl and aniline rings, respectively, while the two benzene rings (benzoyl and aniline) form a dihedral angle of 32.1 (2)°, compared to the corresponding values of 14.3 (8)°, 44.4 (4)° and 58.3 (1)° in N35DCPBA.

In the crystal structure, the molecules are linked by N—H···O hydrogen bonds (Table 1) forming chains running along the a axis, as shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003); Gowda, Foro et al. (2008); Gowda, Tokarčík et al. (2008).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The N-bound H atom was located in a difference map, and its positional parameters were refined [N—H = 0.81 (5) Å]. C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å. All H atoms were refined with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-Chloro-N-(3,5-dichlorophenyl)benzamide top
Crystal data top
C13H8Cl3NOF(000) = 1216
Mr = 300.55Dx = 1.521 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2008 reflections
a = 14.699 (1) Åθ = 2.3–28.0°
b = 8.736 (1) ŵ = 0.68 mm1
c = 20.445 (2) ÅT = 299 K
V = 2625.4 (4) Å3Needle, colourless
Z = 80.38 × 0.14 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2686 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Rotation method using ω and ϕ scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1618
Tmin = 0.781, Tmax = 0.960k = 1010
12954 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.12P)2]
where P = (Fo2 + 2Fc2)/3
2686 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H8Cl3NOV = 2625.4 (4) Å3
Mr = 300.55Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.699 (1) ŵ = 0.68 mm1
b = 8.736 (1) ÅT = 299 K
c = 20.445 (2) Å0.38 × 0.14 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2686 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1288 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.960Rint = 0.094
12954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.230H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.45 e Å3
2686 reflectionsΔρmin = 0.34 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60823 (8)0.38987 (17)0.43298 (7)0.0724 (5)
Cl20.35071 (9)0.06746 (18)0.55821 (7)0.0769 (5)
Cl30.27012 (13)0.5045 (3)0.22328 (10)0.1267 (9)
O10.1652 (2)0.2743 (4)0.36978 (19)0.0721 (11)
N10.2723 (2)0.4586 (4)0.3792 (2)0.0479 (10)
H1N0.284 (3)0.545 (6)0.367 (2)0.057*
C10.3381 (3)0.3802 (5)0.4176 (2)0.0444 (10)
C20.4295 (3)0.4206 (5)0.4086 (2)0.0500 (11)
H20.44600.49470.37820.060*
C30.4950 (3)0.3468 (5)0.4463 (2)0.0533 (12)
C40.4722 (3)0.2395 (5)0.4929 (2)0.0551 (12)
H40.51650.19270.51850.066*
C50.3819 (3)0.2042 (5)0.5002 (2)0.0485 (11)
C60.3138 (3)0.2729 (5)0.4639 (2)0.0455 (10)
H60.25310.24740.47060.055*
C70.1939 (3)0.4018 (5)0.3566 (2)0.0463 (11)
C80.1385 (3)0.5072 (4)0.3149 (2)0.0421 (10)
C90.1654 (3)0.5573 (6)0.2540 (3)0.0619 (13)
C100.1078 (5)0.6459 (7)0.2155 (3)0.090 (2)
H100.12590.67880.17420.108*
C110.0241 (5)0.6837 (7)0.2398 (4)0.094 (2)
H110.01480.74390.21480.113*
C120.0030 (4)0.6354 (7)0.2991 (4)0.0825 (18)
H120.06040.66220.31440.099*
C130.0520 (3)0.5485 (5)0.3367 (3)0.0577 (13)
H130.03200.51580.37750.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0387 (7)0.0917 (10)0.0867 (11)0.0057 (6)0.0020 (6)0.0066 (8)
Cl20.0570 (8)0.0977 (11)0.0759 (10)0.0016 (7)0.0032 (7)0.0413 (8)
Cl30.0856 (14)0.213 (3)0.0812 (13)0.0195 (13)0.0327 (10)0.0204 (14)
O10.070 (2)0.0475 (19)0.098 (3)0.0128 (16)0.037 (2)0.0190 (19)
N10.044 (2)0.0401 (19)0.060 (3)0.0031 (17)0.0158 (18)0.0114 (18)
C10.042 (2)0.044 (2)0.047 (3)0.0060 (19)0.0056 (19)0.004 (2)
C20.042 (3)0.053 (3)0.055 (3)0.004 (2)0.001 (2)0.004 (2)
C30.039 (3)0.060 (3)0.061 (3)0.004 (2)0.008 (2)0.005 (3)
C40.046 (3)0.068 (3)0.052 (3)0.010 (2)0.009 (2)0.003 (3)
C50.044 (2)0.052 (2)0.050 (3)0.002 (2)0.000 (2)0.008 (2)
C60.035 (2)0.047 (2)0.055 (3)0.0028 (19)0.002 (2)0.004 (2)
C70.043 (3)0.041 (2)0.055 (3)0.0052 (19)0.007 (2)0.002 (2)
C80.039 (2)0.041 (2)0.046 (3)0.0013 (17)0.0121 (19)0.002 (2)
C90.054 (3)0.074 (3)0.057 (3)0.001 (2)0.005 (2)0.009 (3)
C100.111 (6)0.095 (5)0.065 (4)0.004 (4)0.030 (4)0.028 (4)
C110.099 (6)0.061 (4)0.121 (7)0.012 (3)0.065 (5)0.005 (4)
C120.062 (4)0.083 (4)0.103 (5)0.026 (3)0.027 (4)0.017 (4)
C130.048 (3)0.059 (3)0.066 (3)0.010 (2)0.011 (2)0.007 (3)
Geometric parameters (Å, º) top
Cl1—C31.728 (5)C5—C61.383 (6)
Cl2—C51.744 (5)C6—H60.93
Cl3—C91.725 (6)C7—C81.496 (6)
O1—C71.221 (5)C8—C91.376 (7)
N1—C71.338 (6)C8—C131.396 (6)
N1—C11.422 (5)C9—C101.392 (8)
N1—H1N0.81 (5)C10—C111.368 (9)
C1—C61.380 (6)C10—H100.93
C1—C21.400 (6)C11—C121.344 (9)
C2—C31.392 (6)C11—H110.93
C2—H20.93C12—C131.350 (7)
C3—C41.378 (6)C12—H120.93
C4—C51.371 (6)C13—H130.93
C4—H40.93
C7—N1—C1126.7 (4)O1—C7—N1124.1 (4)
C7—N1—H1N115 (3)O1—C7—C8119.9 (4)
C1—N1—H1N118 (4)N1—C7—C8115.9 (4)
C6—C1—C2120.7 (4)C9—C8—C13117.9 (4)
C6—C1—N1122.0 (4)C9—C8—C7123.7 (4)
C2—C1—N1117.3 (4)C13—C8—C7118.2 (4)
C3—C2—C1118.3 (4)C8—C9—C10120.9 (5)
C3—C2—H2120.9C8—C9—Cl3120.0 (4)
C1—C2—H2120.9C10—C9—Cl3119.0 (5)
C4—C3—C2122.0 (4)C11—C10—C9118.5 (6)
C4—C3—Cl1119.4 (4)C11—C10—H10120.8
C2—C3—Cl1118.5 (4)C9—C10—H10120.8
C5—C4—C3117.6 (4)C12—C11—C10121.2 (5)
C5—C4—H4121.2C12—C11—H11119.4
C3—C4—H4121.2C10—C11—H11119.4
C4—C5—C6123.0 (4)C11—C12—C13120.8 (6)
C4—C5—Cl2118.8 (3)C11—C12—H12119.6
C6—C5—Cl2118.1 (3)C13—C12—H12119.6
C1—C6—C5118.4 (4)C12—C13—C8120.6 (5)
C1—C6—H6120.8C12—C13—H13119.7
C5—C6—H6120.8C8—C13—H13119.7
C7—N1—C1—C635.1 (7)O1—C7—C8—C9115.6 (6)
C7—N1—C1—C2147.4 (5)N1—C7—C8—C966.7 (6)
C6—C1—C2—C31.6 (6)O1—C7—C8—C1359.7 (6)
N1—C1—C2—C3179.1 (4)N1—C7—C8—C13118.0 (5)
C1—C2—C3—C41.8 (7)C13—C8—C9—C100.2 (7)
C1—C2—C3—Cl1177.2 (3)C7—C8—C9—C10175.1 (5)
C2—C3—C4—C51.5 (7)C13—C8—C9—Cl3177.8 (4)
Cl1—C3—C4—C5177.5 (4)C7—C8—C9—Cl32.5 (6)
C3—C4—C5—C61.1 (7)C8—C9—C10—C110.7 (9)
C3—C4—C5—Cl2179.4 (3)Cl3—C9—C10—C11178.3 (5)
C2—C1—C6—C51.2 (6)C9—C10—C11—C120.7 (10)
N1—C1—C6—C5178.6 (4)C10—C11—C12—C130.3 (9)
C4—C5—C6—C11.0 (7)C11—C12—C13—C80.2 (8)
Cl2—C5—C6—C1179.5 (3)C9—C8—C13—C120.2 (7)
C1—N1—C7—O14.9 (8)C7—C8—C13—C12175.8 (4)
C1—N1—C7—C8177.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (5)2.14 (5)2.913 (5)160 (5)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H8Cl3NO
Mr300.55
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)14.699 (1), 8.736 (1), 20.445 (2)
V3)2625.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.38 × 0.14 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.781, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
12954, 2686, 1288
Rint0.094
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.230, 1.09
No. of reflections2686
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (5)2.14 (5)2.913 (5)160 (5)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds