metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis(triiso­propyl­phosphine-κP)palladium(II)

aDepartment of Inorganic Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz Street, 80952-PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl

(Received 16 June 2008; accepted 23 June 2008; online 28 June 2008)

The title compound, [PdCl2(C9H21P)2], is a centrosymmetric mononuclear palladium(II) complex. The PdII atom, which lies on an inversion center, is in a square-planar geometry.

Related literature

For trans-dichlorido-bis­(triphenyl­phosphine)palladium(II), see: Ferguson et al. (1982[Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679-2681.]). For trans-dichlorido-bis­[diphenyl (cyclo­hexyl)phosphine]palladium(II), see: Meij et al. (2003[Meij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44-m45.]). For trans-dichlorido-bis­[diphen­yl(p-tol­yl)phosphine]palla­dium(II), see: Steyl et al. (2006[Steyl, G., Kirsten, L. & Roodt, A. (2006). Acta Cryst. E62, m1705-m1707.]). For related literature, see: Baum et al. (2006[Baum, E., Matern, E., Robaszkiewicz, A. & Pikies, J. (2006). Z. Anorg. Allg. Chem. 632, 1073-1077.]); Bedford et al. (2003[Bedford, R. B., Haselwood, S. L., Limmert, M. E., Brown, J. M., Ramdeehul, S., Cowley, A. R., Coles, S. J. & Hursthouse, M. B. (2003). Organometallics, 22, 1364-1371.]); Schultz et al. (1992[Schultz, G., Subbotina, N. Y., Jensen, C. M., Golen, J. A. & Hargittai, J. (1992). Inorg. Chim. Acta, 191, 85-90.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C9H21P)2]

  • Mr = 497.76

  • Monoclinic, P 21 /c

  • a = 8.0919 (3) Å

  • b = 8.9176 (4) Å

  • c = 16.1920 (6) Å

  • β = 92.552 (3)°

  • V = 1167.26 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 120 (2) K

  • 0.15 × 0.09 × 0.02 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.791, Tmax = 0.955

  • 7043 measured reflections

  • 2175 independent reflections

  • 1985 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 1.13

  • 2175 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Expanding our work upon the reactivity of [(R3P)2MCl2] (M = Ni, Pd, Pt) towards tBu2P–PLi–PtBu2 (Baum et al., 2006), we have studied the reaction of tBu2P-PLi-P(tBu)(SiMe3).2THF with [trans-(iPr3P)2PdCl2] in a 1:1 molar ratio in THF. Unreacted [trans-(iPr3P)2PdCl2] was isolated from the toluene solution of reaction product as yellow crystals.

The molecular structure of the title compound is shown in Fig.1. The mononuclear complex is centrosymmetric, with the PdII atom lying on an inversion centre. The geometry around the PdII atom is strictly square-planar. The Pd—P [2.3603 (6) Å] and Pd—Cl [2.3030 (6) Å] distances and P—Pd—Cl [89.92 (2)° and 90.18 (2)°] angles are typical for [trans-(R3P)2PdCl2] (Ferguson et al., 1982; Meij et al., 2003; Steyl et al., 2006; Bedford et al., 2003). The distances in [cis-(R3P)2PdCl2] differ significantly from those reported for [trans-(R3P)2PdCl2]. For [cis-(Me3P)2PdCl2], the related distances are 2.374 (3) Å (Pd—Cl, mean value) and 2.258 (2) Å (Pd—P, mean value) (Schultz et al., 1992). The elongation of Pd—Cl distances in cis isomers compared to trans isomers is due to a strong trans effect of PR3 ligand in a position trans to Cl ligand. The shortening of Pd—P distances in cis isomers are caused by a lack of a second phosphine ligand in the trans position. The Cl ligand exerts only weak trans effect.

Related literature top

For trans-dichloro-bis(triphenylphosphine)palladium(II), see: Ferguson et al. (1982). For trans-dichloro-bis[diphenyl (cyclohexyl)phosphine]palladium(II), see: Meij et al. (2003). For trans-dichloro-bis[diphenyl(p-tolyl)phosphine] palladium(II), see: Steyl et al. (2006). For related literature, see: Baum et al. (2006); Bedford et al. (2003); Schultz et al. (1992).

Experimental top

A solution of tBu2P-PLi-P(tBu)(SiMe3).2THF (139 mg, 0.285 mmol) in tetrahydrofuran (THF, 2 mL) was added dropwise to a suspension of yellow powder of [(iPr3P)2PdCl2] (139 mg, 0.28 mmol) in THF (2 ml) at room temperature. The mixture turned red. After allowed to stand at room temperature for 1 d, the mixture was dried under vacuum at 1 mTorr for 1 h, and the residue was dissolved in toluene (4 ml) and filtered. The solution was kept at 277 K for 2d to obtain small yellow crystals of [trans-(iPr3P)2PdCl2].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The highest residual electron-density peak is located 0.86 Å from atom Cl1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Unlabelled atoms are related to labelled atoms by the symmetry operation (1-x, 1-y, -z).
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately along the b axis.
trans-Dichloridobis(triisopropylphosphine-κP)palladium(II) top
Crystal data top
[PdCl2(C9H21P)2]F(000) = 520
Mr = 497.76Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7947 reflections
a = 8.0919 (3) Åθ = 2.3–32.5°
b = 8.9176 (4) ŵ = 1.16 mm1
c = 16.1920 (6) ÅT = 120 K
β = 92.552 (3)°Prism, colourless
V = 1167.26 (8) Å30.15 × 0.09 × 0.02 mm
Z = 2
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
2175 independent reflections
Graphite monochromator1985 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.042
0.75° wide ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 99
Tmin = 0.791, Tmax = 0.955k = 106
7043 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2267P]
where P = (Fo2 + 2Fc2)/3
2175 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[PdCl2(C9H21P)2]V = 1167.26 (8) Å3
Mr = 497.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0919 (3) ŵ = 1.16 mm1
b = 8.9176 (4) ÅT = 120 K
c = 16.1920 (6) Å0.15 × 0.09 × 0.02 mm
β = 92.552 (3)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
2175 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
1985 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.955Rint = 0.042
7043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.13Δρmax = 1.44 e Å3
2175 reflectionsΔρmin = 0.65 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50.500.01758 (14)
P10.62758 (8)0.33350 (7)0.09656 (4)0.01777 (17)
Cl10.53892 (10)0.69501 (7)0.09206 (4)0.0358 (2)
C10.4699 (3)0.2487 (3)0.16092 (14)0.0218 (5)
H10.5290.18580.2040.026*
C20.3743 (3)0.3692 (3)0.20534 (17)0.0322 (6)
H2A0.31780.43470.16450.048*
H2B0.45120.42880.24040.048*
H2C0.29250.32170.23970.048*
C30.3525 (4)0.1470 (3)0.11119 (18)0.0352 (7)
H3A0.26410.11320.14620.053*
H3B0.41340.05990.09160.053*
H3C0.30430.20230.06370.053*
C40.7288 (3)0.1727 (3)0.04740 (15)0.0222 (5)
H40.6390.12210.01340.027*
C50.7990 (4)0.0510 (3)0.10597 (17)0.0336 (6)
H5A0.82220.03960.07420.05*
H5B0.71820.02770.14740.05*
H5C0.90150.08710.13370.05*
C60.8569 (4)0.2198 (3)0.01420 (17)0.0355 (7)
H6A0.95910.25050.01590.053*
H6B0.81360.3040.04750.053*
H6C0.88020.13520.05050.053*
C70.7729 (3)0.4281 (3)0.17166 (15)0.0248 (5)
H70.70880.5120.19590.03*
C80.8372 (4)0.3339 (3)0.24483 (18)0.0393 (7)
H8A0.91220.25660.22540.059*
H8B0.74390.28610.27110.059*
H8C0.89680.39850.2850.059*
C90.9156 (5)0.5020 (3)0.1284 (2)0.0403 (9)
H9A0.97270.57250.16630.06*
H9B0.87230.55620.07940.06*
H9C0.99360.42490.11160.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0209 (2)0.0166 (2)0.01496 (18)0.00014 (9)0.00173 (12)0.00049 (8)
P10.0189 (3)0.0187 (3)0.0156 (3)0.0011 (2)0.0004 (2)0.0009 (2)
Cl10.0575 (5)0.0223 (3)0.0259 (3)0.0064 (3)0.0155 (3)0.0074 (3)
C10.0226 (12)0.0224 (11)0.0205 (12)0.0007 (10)0.0030 (10)0.0034 (10)
C20.0311 (14)0.0334 (14)0.0329 (14)0.0026 (13)0.0120 (12)0.0013 (12)
C30.0326 (15)0.0392 (16)0.0344 (15)0.0152 (13)0.0068 (12)0.0051 (12)
C40.0226 (12)0.0216 (12)0.0225 (12)0.0035 (10)0.0023 (10)0.0014 (10)
C50.0391 (17)0.0292 (14)0.0329 (15)0.0120 (14)0.0053 (13)0.0000 (13)
C60.0354 (16)0.0381 (16)0.0341 (15)0.0051 (13)0.0129 (13)0.0002 (12)
C70.0252 (13)0.0262 (13)0.0225 (12)0.0011 (11)0.0049 (10)0.0019 (10)
C80.0494 (18)0.0365 (15)0.0301 (15)0.0017 (14)0.0196 (13)0.0004 (12)
C90.0307 (19)0.052 (2)0.0378 (19)0.0199 (12)0.0029 (16)0.0036 (12)
Geometric parameters (Å, º) top
Pd1—Cl1i2.3030 (6)C4—C51.533 (4)
Pd1—Cl12.3030 (6)C4—H41
Pd1—P12.3603 (6)C5—H5A0.98
Pd1—P1i2.3603 (6)C5—H5B0.98
P1—C11.845 (2)C5—H5C0.98
P1—C41.849 (2)C6—H6A0.98
P1—C71.856 (2)C6—H6B0.98
C1—C31.518 (4)C6—H6C0.98
C1—C21.523 (3)C7—C81.525 (4)
C1—H11C7—C91.528 (4)
C2—H2A0.98C7—H71
C2—H2B0.98C8—H8A0.98
C2—H2C0.98C8—H8B0.98
C3—H3A0.98C8—H8C0.98
C3—H3B0.98C9—H9A0.98
C3—H3C0.98C9—H9B0.98
C4—C61.529 (3)C9—H9C0.98
Cl1i—Pd1—Cl1180.00 (3)C6—C4—H4105.2
Cl1i—Pd1—P189.82 (2)C5—C4—H4105.2
Cl1—Pd1—P190.18 (2)P1—C4—H4105.2
Cl1i—Pd1—P1i90.18 (2)C4—C5—H5A109.5
Cl1—Pd1—P1i89.82 (2)C4—C5—H5B109.5
P1—Pd1—P1i180H5A—C5—H5B109.5
C1—P1—C4104.84 (11)C4—C5—H5C109.5
C1—P1—C7104.47 (11)H5A—C5—H5C109.5
C4—P1—C7110.77 (12)H5B—C5—H5C109.5
C1—P1—Pd1109.81 (8)C4—C6—H6A109.5
C4—P1—Pd1113.07 (8)C4—C6—H6B109.5
C7—P1—Pd1113.18 (8)H6A—C6—H6B109.5
C3—C1—C2110.7 (2)C4—C6—H6C109.5
C3—C1—P1112.16 (17)H6A—C6—H6C109.5
C2—C1—P1110.86 (17)H6B—C6—H6C109.5
C3—C1—H1107.6C8—C7—C9110.8 (2)
C2—C1—H1107.6C8—C7—P1116.30 (18)
P1—C1—H1107.6C9—C7—P1111.43 (19)
C1—C2—H2A109.5C8—C7—H7105.8
C1—C2—H2B109.5C9—C7—H7105.8
H2A—C2—H2B109.5P1—C7—H7105.8
C1—C2—H2C109.5C7—C8—H8A109.5
H2A—C2—H2C109.5C7—C8—H8B109.5
H2B—C2—H2C109.5H8A—C8—H8B109.5
C1—C3—H3A109.5C7—C8—H8C109.5
C1—C3—H3B109.5H8A—C8—H8C109.5
H3A—C3—H3B109.5H8B—C8—H8C109.5
C1—C3—H3C109.5C7—C9—H9A109.5
H3A—C3—H3C109.5C7—C9—H9B109.5
H3B—C3—H3C109.5H9A—C9—H9B109.5
C6—C4—C5110.8 (2)C7—C9—H9C109.5
C6—C4—P1113.17 (18)H9A—C9—H9C109.5
C5—C4—P1116.20 (17)H9B—C9—H9C109.5
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C9H21P)2]
Mr497.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.0919 (3), 8.9176 (4), 16.1920 (6)
β (°) 92.552 (3)
V3)1167.26 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.15 × 0.09 × 0.02
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.791, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7043, 2175, 1985
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.13
No. of reflections2175
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 0.65

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBaum, E., Matern, E., Robaszkiewicz, A. & Pikies, J. (2006). Z. Anorg. Allg. Chem. 632, 1073–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationBedford, R. B., Haselwood, S. L., Limmert, M. E., Brown, J. M., Ramdeehul, S., Cowley, A. R., Coles, S. J. & Hursthouse, M. B. (2003). Organometallics, 22, 1364–1371.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44–m45.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSchultz, G., Subbotina, N. Y., Jensen, C. M., Golen, J. A. & Hargittai, J. (1992). Inorg. Chim. Acta, 191, 85–90.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyl, G., Kirsten, L. & Roodt, A. (2006). Acta Cryst. E62, m1705–m1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds