metal-organic compounds
trans-Dichloridobis(triisopropylphosphine-κP)palladium(II)
aDepartment of Inorganic Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz Street, 80952-PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl
The title compound, [PdCl2(C9H21P)2], is a centrosymmetric mononuclear palladium(II) complex. The PdII atom, which lies on an inversion center, is in a square-planar geometry.
Related literature
For trans-dichlorido-bis(triphenylphosphine)palladium(II), see: Ferguson et al. (1982). For trans-dichlorido-bis[diphenyl (cyclohexyl)phosphine]palladium(II), see: Meij et al. (2003). For trans-dichlorido-bis[diphenyl(p-tolyl)phosphine]palladium(II), see: Steyl et al. (2006). For related literature, see: Baum et al. (2006); Bedford et al. (2003); Schultz et al. (1992).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808018904/ci2618sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018904/ci2618Isup2.hkl
A solution of tBu2P-PLi-P(tBu)(SiMe3).2THF (139 mg, 0.285 mmol) in tetrahydrofuran (THF, 2 mL) was added dropwise to a suspension of yellow powder of [(iPr3P)2PdCl2] (139 mg, 0.28 mmol) in THF (2 ml) at room temperature. The mixture turned red. After allowed to stand at room temperature for 1 d, the mixture was dried under vacuum at 1 mTorr for 1 h, and the residue was dissolved in toluene (4 ml) and filtered. The solution was kept at 277 K for 2d to obtain small yellow crystals of [trans-(iPr3P)2PdCl2].
All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The highest residual electron-density peak is located 0.86 Å from atom Cl1.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[PdCl2(C9H21P)2] | F(000) = 520 |
Mr = 497.76 | Dx = 1.416 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7947 reflections |
a = 8.0919 (3) Å | θ = 2.3–32.5° |
b = 8.9176 (4) Å | µ = 1.16 mm−1 |
c = 16.1920 (6) Å | T = 120 K |
β = 92.552 (3)° | Prism, colourless |
V = 1167.26 (8) Å3 | 0.15 × 0.09 × 0.02 mm |
Z = 2 |
Oxford Diffraction KM-4-CCD diffractometer | 2175 independent reflections |
Graphite monochromator | 1985 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.042 |
0.75° wide ω scans | θmax = 25.5°, θmin = 2.5° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | h = −9→9 |
Tmin = 0.791, Tmax = 0.955 | k = −10→6 |
7043 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2267P] where P = (Fo2 + 2Fc2)/3 |
2175 reflections | (Δ/σ)max = 0.001 |
112 parameters | Δρmax = 1.44 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
[PdCl2(C9H21P)2] | V = 1167.26 (8) Å3 |
Mr = 497.76 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0919 (3) Å | µ = 1.16 mm−1 |
b = 8.9176 (4) Å | T = 120 K |
c = 16.1920 (6) Å | 0.15 × 0.09 × 0.02 mm |
β = 92.552 (3)° |
Oxford Diffraction KM-4-CCD diffractometer | 2175 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | 1985 reflections with I > 2σ(I) |
Tmin = 0.791, Tmax = 0.955 | Rint = 0.042 |
7043 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.13 | Δρmax = 1.44 e Å−3 |
2175 reflections | Δρmin = −0.65 e Å−3 |
112 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.5 | 0.5 | 0 | 0.01758 (14) | |
P1 | 0.62758 (8) | 0.33350 (7) | 0.09656 (4) | 0.01777 (17) | |
Cl1 | 0.53892 (10) | 0.69501 (7) | 0.09206 (4) | 0.0358 (2) | |
C1 | 0.4699 (3) | 0.2487 (3) | 0.16092 (14) | 0.0218 (5) | |
H1 | 0.529 | 0.1858 | 0.204 | 0.026* | |
C2 | 0.3743 (3) | 0.3692 (3) | 0.20534 (17) | 0.0322 (6) | |
H2A | 0.3178 | 0.4347 | 0.1645 | 0.048* | |
H2B | 0.4512 | 0.4288 | 0.2404 | 0.048* | |
H2C | 0.2925 | 0.3217 | 0.2397 | 0.048* | |
C3 | 0.3525 (4) | 0.1470 (3) | 0.11119 (18) | 0.0352 (7) | |
H3A | 0.2641 | 0.1132 | 0.1462 | 0.053* | |
H3B | 0.4134 | 0.0599 | 0.0916 | 0.053* | |
H3C | 0.3043 | 0.2023 | 0.0637 | 0.053* | |
C4 | 0.7288 (3) | 0.1727 (3) | 0.04740 (15) | 0.0222 (5) | |
H4 | 0.639 | 0.1221 | 0.0134 | 0.027* | |
C5 | 0.7990 (4) | 0.0510 (3) | 0.10597 (17) | 0.0336 (6) | |
H5A | 0.8222 | −0.0396 | 0.0742 | 0.05* | |
H5B | 0.7182 | 0.0277 | 0.1474 | 0.05* | |
H5C | 0.9015 | 0.0871 | 0.1337 | 0.05* | |
C6 | 0.8569 (4) | 0.2198 (3) | −0.01420 (17) | 0.0355 (7) | |
H6A | 0.9591 | 0.2505 | 0.0159 | 0.053* | |
H6B | 0.8136 | 0.304 | −0.0475 | 0.053* | |
H6C | 0.8802 | 0.1352 | −0.0505 | 0.053* | |
C7 | 0.7729 (3) | 0.4281 (3) | 0.17166 (15) | 0.0248 (5) | |
H7 | 0.7088 | 0.512 | 0.1959 | 0.03* | |
C8 | 0.8372 (4) | 0.3339 (3) | 0.24483 (18) | 0.0393 (7) | |
H8A | 0.9122 | 0.2566 | 0.2254 | 0.059* | |
H8B | 0.7439 | 0.2861 | 0.2711 | 0.059* | |
H8C | 0.8968 | 0.3985 | 0.285 | 0.059* | |
C9 | 0.9156 (5) | 0.5020 (3) | 0.1284 (2) | 0.0403 (9) | |
H9A | 0.9727 | 0.5725 | 0.1663 | 0.06* | |
H9B | 0.8723 | 0.5562 | 0.0794 | 0.06* | |
H9C | 0.9936 | 0.4249 | 0.1116 | 0.06* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0209 (2) | 0.0166 (2) | 0.01496 (18) | −0.00014 (9) | −0.00173 (12) | −0.00049 (8) |
P1 | 0.0189 (3) | 0.0187 (3) | 0.0156 (3) | 0.0011 (2) | −0.0004 (2) | 0.0009 (2) |
Cl1 | 0.0575 (5) | 0.0223 (3) | 0.0259 (3) | 0.0064 (3) | −0.0155 (3) | −0.0074 (3) |
C1 | 0.0226 (12) | 0.0224 (11) | 0.0205 (12) | 0.0007 (10) | 0.0030 (10) | 0.0034 (10) |
C2 | 0.0311 (14) | 0.0334 (14) | 0.0329 (14) | 0.0026 (13) | 0.0120 (12) | −0.0013 (12) |
C3 | 0.0326 (15) | 0.0392 (16) | 0.0344 (15) | −0.0152 (13) | 0.0068 (12) | −0.0051 (12) |
C4 | 0.0226 (12) | 0.0216 (12) | 0.0225 (12) | 0.0035 (10) | 0.0023 (10) | −0.0014 (10) |
C5 | 0.0391 (17) | 0.0292 (14) | 0.0329 (15) | 0.0120 (14) | 0.0053 (13) | 0.0000 (13) |
C6 | 0.0354 (16) | 0.0381 (16) | 0.0341 (15) | 0.0051 (13) | 0.0129 (13) | 0.0002 (12) |
C7 | 0.0252 (13) | 0.0262 (13) | 0.0225 (12) | −0.0011 (11) | −0.0049 (10) | −0.0019 (10) |
C8 | 0.0494 (18) | 0.0365 (15) | 0.0301 (15) | 0.0017 (14) | −0.0196 (13) | −0.0004 (12) |
C9 | 0.0307 (19) | 0.052 (2) | 0.0378 (19) | −0.0199 (12) | −0.0029 (16) | −0.0036 (12) |
Pd1—Cl1i | 2.3030 (6) | C4—C5 | 1.533 (4) |
Pd1—Cl1 | 2.3030 (6) | C4—H4 | 1 |
Pd1—P1 | 2.3603 (6) | C5—H5A | 0.98 |
Pd1—P1i | 2.3603 (6) | C5—H5B | 0.98 |
P1—C1 | 1.845 (2) | C5—H5C | 0.98 |
P1—C4 | 1.849 (2) | C6—H6A | 0.98 |
P1—C7 | 1.856 (2) | C6—H6B | 0.98 |
C1—C3 | 1.518 (4) | C6—H6C | 0.98 |
C1—C2 | 1.523 (3) | C7—C8 | 1.525 (4) |
C1—H1 | 1 | C7—C9 | 1.528 (4) |
C2—H2A | 0.98 | C7—H7 | 1 |
C2—H2B | 0.98 | C8—H8A | 0.98 |
C2—H2C | 0.98 | C8—H8B | 0.98 |
C3—H3A | 0.98 | C8—H8C | 0.98 |
C3—H3B | 0.98 | C9—H9A | 0.98 |
C3—H3C | 0.98 | C9—H9B | 0.98 |
C4—C6 | 1.529 (3) | C9—H9C | 0.98 |
Cl1i—Pd1—Cl1 | 180.00 (3) | C6—C4—H4 | 105.2 |
Cl1i—Pd1—P1 | 89.82 (2) | C5—C4—H4 | 105.2 |
Cl1—Pd1—P1 | 90.18 (2) | P1—C4—H4 | 105.2 |
Cl1i—Pd1—P1i | 90.18 (2) | C4—C5—H5A | 109.5 |
Cl1—Pd1—P1i | 89.82 (2) | C4—C5—H5B | 109.5 |
P1—Pd1—P1i | 180 | H5A—C5—H5B | 109.5 |
C1—P1—C4 | 104.84 (11) | C4—C5—H5C | 109.5 |
C1—P1—C7 | 104.47 (11) | H5A—C5—H5C | 109.5 |
C4—P1—C7 | 110.77 (12) | H5B—C5—H5C | 109.5 |
C1—P1—Pd1 | 109.81 (8) | C4—C6—H6A | 109.5 |
C4—P1—Pd1 | 113.07 (8) | C4—C6—H6B | 109.5 |
C7—P1—Pd1 | 113.18 (8) | H6A—C6—H6B | 109.5 |
C3—C1—C2 | 110.7 (2) | C4—C6—H6C | 109.5 |
C3—C1—P1 | 112.16 (17) | H6A—C6—H6C | 109.5 |
C2—C1—P1 | 110.86 (17) | H6B—C6—H6C | 109.5 |
C3—C1—H1 | 107.6 | C8—C7—C9 | 110.8 (2) |
C2—C1—H1 | 107.6 | C8—C7—P1 | 116.30 (18) |
P1—C1—H1 | 107.6 | C9—C7—P1 | 111.43 (19) |
C1—C2—H2A | 109.5 | C8—C7—H7 | 105.8 |
C1—C2—H2B | 109.5 | C9—C7—H7 | 105.8 |
H2A—C2—H2B | 109.5 | P1—C7—H7 | 105.8 |
C1—C2—H2C | 109.5 | C7—C8—H8A | 109.5 |
H2A—C2—H2C | 109.5 | C7—C8—H8B | 109.5 |
H2B—C2—H2C | 109.5 | H8A—C8—H8B | 109.5 |
C1—C3—H3A | 109.5 | C7—C8—H8C | 109.5 |
C1—C3—H3B | 109.5 | H8A—C8—H8C | 109.5 |
H3A—C3—H3B | 109.5 | H8B—C8—H8C | 109.5 |
C1—C3—H3C | 109.5 | C7—C9—H9A | 109.5 |
H3A—C3—H3C | 109.5 | C7—C9—H9B | 109.5 |
H3B—C3—H3C | 109.5 | H9A—C9—H9B | 109.5 |
C6—C4—C5 | 110.8 (2) | C7—C9—H9C | 109.5 |
C6—C4—P1 | 113.17 (18) | H9A—C9—H9C | 109.5 |
C5—C4—P1 | 116.20 (17) | H9B—C9—H9C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [PdCl2(C9H21P)2] |
Mr | 497.76 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 8.0919 (3), 8.9176 (4), 16.1920 (6) |
β (°) | 92.552 (3) |
V (Å3) | 1167.26 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.15 × 0.09 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction KM-4-CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.791, 0.955 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7043, 2175, 1985 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.089, 1.13 |
No. of reflections | 2175 |
No. of parameters | 112 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.44, −0.65 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
References
Baum, E., Matern, E., Robaszkiewicz, A. & Pikies, J. (2006). Z. Anorg. Allg. Chem. 632, 1073–1077. Web of Science CSD CrossRef CAS Google Scholar
Bedford, R. B., Haselwood, S. L., Limmert, M. E., Brown, J. M., Ramdeehul, S., Cowley, A. R., Coles, S. J. & Hursthouse, M. B. (2003). Organometallics, 22, 1364–1371. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Meij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44–m45. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Schultz, G., Subbotina, N. Y., Jensen, C. M., Golen, J. A. & Hargittai, J. (1992). Inorg. Chim. Acta, 191, 85–90. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steyl, G., Kirsten, L. & Roodt, A. (2006). Acta Cryst. E62, m1705–m1707. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Expanding our work upon the reactivity of [(R3P)2MCl2] (M = Ni, Pd, Pt) towards tBu2P–PLi–PtBu2 (Baum et al., 2006), we have studied the reaction of tBu2P-PLi-P(tBu)(SiMe3).2THF with [trans-(iPr3P)2PdCl2] in a 1:1 molar ratio in THF. Unreacted [trans-(iPr3P)2PdCl2] was isolated from the toluene solution of reaction product as yellow crystals.
The molecular structure of the title compound is shown in Fig.1. The mononuclear complex is centrosymmetric, with the PdII atom lying on an inversion centre. The geometry around the PdII atom is strictly square-planar. The Pd—P [2.3603 (6) Å] and Pd—Cl [2.3030 (6) Å] distances and P—Pd—Cl [89.92 (2)° and 90.18 (2)°] angles are typical for [trans-(R3P)2PdCl2] (Ferguson et al., 1982; Meij et al., 2003; Steyl et al., 2006; Bedford et al., 2003). The distances in [cis-(R3P)2PdCl2] differ significantly from those reported for [trans-(R3P)2PdCl2]. For [cis-(Me3P)2PdCl2], the related distances are 2.374 (3) Å (Pd—Cl, mean value) and 2.258 (2) Å (Pd—P, mean value) (Schultz et al., 1992). The elongation of Pd—Cl distances in cis isomers compared to trans isomers is due to a strong trans effect of PR3 ligand in a position trans to Cl ligand. The shortening of Pd—P distances in cis isomers are caused by a lack of a second phosphine ligand in the trans position. The Cl ligand exerts only weak trans effect.