organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(1,3-di­thiol-2-yl­­idene)hydrazine

aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 20 May 2008; accepted 31 May 2008; online 7 June 2008)

The title mol­ecule, C6H4N2S4, has a crystallographically imposed centre of symmetry located at the mid-point of the N—N single bond. The mol­ecule is essentially planar: the two five-membered rings form a dihedral angle of 0.17 (6)°. The crystal packing exhibits short inter­molecular S⋯S contacts of 3.549 (2) Å.

Related literature

For general background, see: Yoshita et al. (1983[Yoshita, Z., Kawase, T., Awaji, H., Sugimoto, I., Sugimoto, T. & Yoneta, S. (1983). Tetrahedron Lett. 24, 3460-3472.]); Moore et al., (1998[Moore, A. J., Bryce, M. R., Batsanov, A. S., Green, A., Howard, J. A. K., Mckervey, M. A., McGuigan, P., Ledoux, I., Orti, E., Viruela, R., Viruela, P. M. & Tarbï, B. J. (1998). J. Mater. Chem. 8, 1173-1184.]); Taniguchi et al. (2003[Taniguchi, H., Miyashita, M., Uchiyama, K., Satoh, K., Mori, N., Okamoto, H., Miyagawa, K., Kanoda, K., Hedo, M. & Uwatoko, Y. (2003). J. Phys. Soc. Jpn, 72, 468-471.]). For useful properties of related compounds, see: Andreu et al., (2004[Andreu, R., Garin, J., Lopez, C., Orduna, J. & Levillian, E. (2004). Tetrahedron Lett. 45, 8211-8214.]); Guerin et al. (2002[Guerin, D., Lorcy, D., Carlier, R., Los, S. & Piekara-Sady, L. (2002). J. Solid State Chem. 168, 590-596.]). For the synthesis of the starting material, 2-methyl­thio-1,3-dithiol­ium iodide, see: Challenger et al. (1953[Challenger, F., Mason, E. A., Holdsworth, E. C. & Emmott, R. (1953). J. Chem. Soc. pp. 292-304.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4N2S4

  • Mr = 232.35

  • Monoclinic, P 21 /n

  • a = 3.9664 (3) Å

  • b = 10.122 (6) Å

  • c = 11.301 (8) Å

  • β = 97.39 (3)°

  • V = 449.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 291 (2) K

  • 0.09 × 0.08 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.919, Tmax = 0.929

  • 4256 measured reflections

  • 1022 independent reflections

  • 935 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.07

  • 1022 reflections

  • 55 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected interatomic distance (Å)

S1⋯S2i 3.549 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Within the field of molecular conductors, tetrathiafulvalene and its π-derivatives have played a leading role in the formation of organic charge-transfer complexes (Yoshita et al. 1983; Moore et al., 1998; Taniguchi et al. 2003). One of the important strategies for the molecular design is to incorporate the nitrogen atom instead of carbon atoms to the conjugated spacer to modulate electron-donating properties (Andreu et al., 2004; Guerin et al., 2002). As a π-extended tetrathiafulvalene, we synthesized the title compound by incorporation an azino spacer between two 1,3-dithiole units.

The X-ray structure determination reveals that the title complex, (I) (Fig. 1), crystallizes in the monoclinic space group P21/n space group.There is a half of the molecule in the asymmetric unit, and the inversion center lies on the mid-point of N—N bond. Two five-membered rings make a dihedral angle of 0.17 (6)°. In the absence of classical hydrogen bonds, the crystal packing exhibits short intermolecular S···S contacts of 3.549 (2) Å.

Related literature top

For general background, see: Yoshita et al. (1983); Moore et al., (1998); Taniguchi et al. (2003). For useful properties of related compounds, see: Andreu et al., (2004); Guerin et al. (2002). For the synthesis of the starting material, 2-methylthio-1,3-dithiolium iodide, see: Challenger et al. (1953).

Experimental top

2-Methylthio-1,3-dithiolium iodide (Challenger et al., 1953) (0.15 g, 0.54 mmol) and hydrazine monohydrate (0.13 g, 0.27 mmol) were dissovled in acetic acid (10 ml). The reaction mixture was refluxed for 2 h and then cooled to room temperature. The resulting solution was concentrated in vacuo. The yellow solid obtained was subjected to column chromatography (silica gel, dichloromethane) to afford the title compound as a pale yellow solid (0.08 g, 63.8% m.p. 481–483 K). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an acetone solution at room temperature.

Refinement top

H atoms were placed at calculated positions with C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering and 30% probalility displacement ellipsoids [symmetry code: (A) 2 - x, 1 - y, 1 - z].
1,2-Bis(1,3-dithiol-2-ylidene)hydrazine top
Crystal data top
C6H4N2S4F(000) = 236
Mr = 232.35Dx = 1.715 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3828 reflections
a = 3.9664 (3) Åθ = 3.6–27.5°
b = 10.122 (6) ŵ = 1.00 mm1
c = 11.301 (8) ÅT = 291 K
β = 97.39 (3)°Block, yellow
V = 449.9 (4) Å30.09 × 0.08 × 0.08 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1022 independent reflections
Radiation source: fine-focus sealed tube935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 45
Tmin = 0.919, Tmax = 0.929k = 1313
4256 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.0828P]
where P = (Fo2 + 2Fc2)/3
1022 reflections(Δ/σ)max < 0.001
55 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H4N2S4V = 449.9 (4) Å3
Mr = 232.35Z = 2
Monoclinic, P21/nMo Kα radiation
a = 3.9664 (3) ŵ = 1.00 mm1
b = 10.122 (6) ÅT = 291 K
c = 11.301 (8) Å0.09 × 0.08 × 0.08 mm
β = 97.39 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1022 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
935 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.929Rint = 0.021
4256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
1022 reflectionsΔρmin = 0.18 e Å3
55 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0199 (3)0.62381 (14)0.40299 (12)0.0288 (3)
C20.9210 (4)0.87204 (16)0.36541 (15)0.0433 (4)
H20.86680.96070.37320.052*
C31.0268 (5)0.82730 (15)0.26661 (14)0.0410 (4)
H31.04950.88320.20280.049*
N11.0475 (3)0.50484 (12)0.44228 (10)0.0355 (3)
S11.12148 (10)0.66082 (4)0.26068 (3)0.03701 (14)
S20.88557 (10)0.76025 (4)0.48070 (3)0.03796 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0330 (7)0.0293 (6)0.0243 (6)0.0017 (5)0.0050 (5)0.0016 (5)
C20.0545 (9)0.0273 (7)0.0482 (9)0.0034 (7)0.0067 (7)0.0046 (7)
C30.0528 (9)0.0313 (8)0.0382 (8)0.0033 (6)0.0040 (7)0.0095 (6)
N10.0512 (8)0.0299 (6)0.0268 (6)0.0005 (5)0.0110 (5)0.0014 (4)
S10.0519 (3)0.0332 (2)0.0278 (2)0.00120 (15)0.01239 (16)0.00342 (13)
S20.0487 (3)0.0337 (2)0.0333 (2)0.00350 (15)0.01252 (17)0.00133 (14)
Geometric parameters (Å, º) top
C1—N11.283 (2)C2—H20.9300
C1—S11.7480 (17)C3—S11.7296 (19)
C1—S21.7558 (16)C3—H30.9300
C2—C31.322 (2)N1—N1i1.407 (2)
C2—S21.7448 (18)
S1···S2ii3.549 (2)
N1—C1—S1120.00 (11)C2—C3—S1117.41 (12)
N1—C1—S2125.66 (11)C2—C3—H3121.3
S1—C1—S2114.35 (8)S1—C3—H3121.3
C3—C2—S2118.24 (13)C1—N1—N1i111.41 (14)
C3—C2—H2120.9C3—S1—C195.53 (8)
S2—C2—H2120.9C2—S2—C194.47 (9)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H4N2S4
Mr232.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)3.9664 (3), 10.122 (6), 11.301 (8)
β (°) 97.39 (3)
V3)449.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.09 × 0.08 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.919, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
4256, 1022, 935
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.07
No. of reflections1022
No. of parameters55
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected interatomic distances (Å) top
S1···S2i3.549 (2)
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 20060184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationAndreu, R., Garin, J., Lopez, C., Orduna, J. & Levillian, E. (2004). Tetrahedron Lett. 45, 8211–8214.  Web of Science CrossRef CAS Google Scholar
First citationChallenger, F., Mason, E. A., Holdsworth, E. C. & Emmott, R. (1953). J. Chem. Soc. pp. 292–304.  CrossRef Web of Science Google Scholar
First citationGuerin, D., Lorcy, D., Carlier, R., Los, S. & Piekara-Sady, L. (2002). J. Solid State Chem. 168, 590–596.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMoore, A. J., Bryce, M. R., Batsanov, A. S., Green, A., Howard, J. A. K., Mckervey, M. A., McGuigan, P., Ledoux, I., Orti, E., Viruela, R., Viruela, P. M. & Tarbï, B. J. (1998). J. Mater. Chem. 8, 1173–1184.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniguchi, H., Miyashita, M., Uchiyama, K., Satoh, K., Mori, N., Okamoto, H., Miyagawa, K., Kanoda, K., Hedo, M. & Uwatoko, Y. (2003). J. Phys. Soc. Jpn, 72, 468–471.  Web of Science CrossRef CAS Google Scholar
First citationYoshita, Z., Kawase, T., Awaji, H., Sugimoto, I., Sugimoto, T. & Yoneta, S. (1983). Tetrahedron Lett. 24, 3460–3472.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds