organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Adamant­yl)-4-bromo­anisole at 123 K

aZhejiang Police College Experience Center, Zhejiang Police College, Hangzhou 310053, People's Republic of China
*Correspondence e-mail: zpccxw@126.com

(Received 26 May 2008; accepted 2 June 2008; online 7 June 2008)

In the title compound [systematic name: 2-(1-adamantyl)-4-bromo-1-­methoxy­benzene], C17H21BrO, two weak intra­molecular C—H⋯O hydrogen bonds influence the mol­ecular conformation. The crystal packing exhibits C—H⋯π inter­actions, with a relatively short inter­molecular C⋯Cg contact of 3.568 (5) Å, where Cg is the centroid of the benzene ring. The crystal studied exhibited inversion twinning.

Related literature

For related crystal structures, see: Nordman & Schmitkons (1965[Nordman, C. E. & Schmitkons, D. L. (1965). Acta Cryst. 18, 764-767.]); Amoureux et al. (1980[Amoureux, J. P., Bee, M. & Damien, J. C. (1980). Acta Cryst. B36, 2633-2636.]); Amoureux & Bee (1980[Amoureux, J. P. & Bee, M. (1980). Acta Cryst. B36, 2636-2642.]); Pouwer et al. (2007[Pouwer, R. H., Harper, J. B., Vyakaranam, K., Michl, J., Williams, C. M., Jessen, C. H. & Bernhardt, P. V. (2007). Eur. J. Org. Chem. pp. 241-248.]). For general background, see: Chomienne et al. (1994[Chomienne, C., Ballerini, P., Balitrand, N., Amor, M., Bernard, J. F., Boivin, P., Daniel, M. T., Berger, R., Castaigne, S. & Degos, L. (1994). Lancet ii, 344, 746-747.]). For synthesis, see: Antibes et al. (1988[Antibes, B. S., Grasse, J. E. & Nice, J. B. (1988). US Patent 4 717 720.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21BrO

  • Mr = 321.25

  • Orthorhombic, P 21 21 21

  • a = 7.3815 (11) Å

  • b = 13.2067 (19) Å

  • c = 15.067 (2) Å

  • V = 1468.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 123 (2) K

  • 0.30 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.438, Tmax = 0.492

  • 12697 measured reflections

  • 2580 independent reflections

  • 2279 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 0.86

  • 2580 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1072 Friedel pairs

  • Flack parameter: 0.340 (15)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1 0.99 2.35 3.003 (5) 123
C17—H17B⋯O1 0.99 2.35 3.004 (4) 123
C4—H4⋯Cgi 0.95 2.66 3.568 (5) 161
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecule of adamantane has high symmetry, Td, and adamantane crystallizes in the highest space group, Fm3 m (Nordman & Schmitkons, 1965; Amoureux et al., 1980; Amoureux & Bee, 1980). In view of the development of crystal structure systems and the design of organic crystals, it is of interest to study the effects of some simple functional substituents having hydrogen-bonding ability on the symmetry of the crystals of adamantane derivatives. The title compound is an important intermediate of adapalene, which is a new synthetic retinoid of the naphthoic acid series, and was developed for the topical treatment of Acne vulgaris and prevention of some forms of cancer, including the acute promyelocytic leukaemia (Chomienne et al., 1994). Here we report the crystal structure of the title compound (Fig. 1).

In the title compound, the structural parameters of the adamantyl are closely comparable to those found in reported molecule (Pouwer et al., 2007). The C atoms of the adamantine moiety have Csp3 hybridized orbitals, with C—C—C angles in the range 106.6 (4)–111.6 (4)°. The methoxy group and bromo group are coplanar with the benzene ring.

It is of note that the O atoms of the methoxy group participates in formation of two intramolecular C—H···O interactions,and both intramolecular C—H···O interactions are nearly the same (Table.1). Meanwhile, in the crystal structure, an intermolecular C—H···π interaction involving the benzene ring (with the centroid Cg) is observed (Table 1).

Related literature top

For related crystal structures, see: Nordman & Schmitkons (1965); Amoureux et al. (1980); Amoureux & Bee (1980); Pouwer et al. (2007). For general background, see: Chomienne et al. (1994). For synthesis, see: Antibes et al. (1988).

Experimental top

The title compound was prepared according to the literature method (Antibes et al., 1988). Crystals suitable for X-ray analysis were obtained by slow evaporation of an 2-propanol solution at 295 K.

Refinement top

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
2-(1-adamantyl)-4-bromomethoxybenzene top
Crystal data top
C17H21BrOF(000) = 664
Mr = 321.25Dx = 1.453 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2580 reflections
a = 7.3815 (11) Åθ = 2–25.0°
b = 13.2067 (19) ŵ = 2.79 mm1
c = 15.067 (2) ÅT = 123 K
V = 1468.8 (4) Å3Block, colourless
Z = 40.30 × 0.26 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2580 independent reflections
Radiation source: fine-focus sealed tube2279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.438, Tmax = 0.492k = 1514
12697 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0694P)2 + 1.9231P]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
2580 reflectionsΔρmax = 0.51 e Å3
172 parametersΔρmin = 0.59 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1072 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.340 (15)
Crystal data top
C17H21BrOV = 1468.8 (4) Å3
Mr = 321.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3815 (11) ŵ = 2.79 mm1
b = 13.2067 (19) ÅT = 123 K
c = 15.067 (2) Å0.30 × 0.26 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2580 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2279 reflections with I > 2σ(I)
Tmin = 0.438, Tmax = 0.492Rint = 0.049
12697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.51 e Å3
S = 0.86Δρmin = 0.59 e Å3
2580 reflectionsAbsolute structure: Flack (1983), with 1072 Friedel pairs
172 parametersAbsolute structure parameter: 0.340 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49661 (7)0.52137 (3)0.02595 (3)0.05940 (19)
O10.3914 (4)0.9390 (2)0.17914 (19)0.0495 (7)
C80.1674 (5)0.7808 (3)0.2493 (2)0.0306 (8)
C170.2606 (5)0.8175 (3)0.3350 (2)0.0334 (8)
H17A0.34960.76620.35480.040*
H17B0.32690.88120.32280.040*
C20.4172 (5)0.8448 (3)0.1434 (2)0.0363 (9)
C110.2109 (5)0.7762 (4)0.3180 (3)0.0512 (11)
H11A0.27680.75160.26500.061*
H11B0.29990.78710.36620.061*
C120.0155 (7)0.9143 (3)0.3787 (3)0.0495 (10)
H12A0.04720.97850.36460.059*
H12B0.10340.92750.42700.059*
C90.0205 (6)0.8587 (3)0.2208 (2)0.0403 (9)
H9A0.07900.92370.20520.048*
H9B0.04410.83330.16770.048*
C70.3094 (5)0.7656 (3)0.1763 (2)0.0307 (8)
C140.0274 (6)0.7365 (3)0.4301 (2)0.0439 (10)
H14A0.06100.74690.47860.053*
H14B0.11750.68580.44990.053*
C160.0668 (5)0.6818 (3)0.2726 (3)0.0374 (9)
H16A0.00370.65620.21910.045*
H16B0.15590.63000.29130.045*
C60.3380 (5)0.6697 (3)0.1394 (2)0.0346 (8)
H60.26730.61410.15940.042*
C40.5731 (6)0.7319 (4)0.0433 (3)0.0469 (10)
H40.66330.72000.00050.056*
C10.4924 (7)1.0210 (3)0.1470 (3)0.0544 (10)
H1A0.46011.08230.18000.082*
H1B0.46601.03090.08390.082*
H1C0.62191.00700.15470.082*
C30.5459 (6)0.8275 (3)0.0770 (3)0.0472 (11)
H30.61550.88250.05490.057*
C150.0708 (5)0.6981 (3)0.3467 (3)0.0428 (9)
H150.13280.63260.36040.051*
C130.1216 (5)0.8356 (3)0.4087 (2)0.0380 (9)
H130.18540.86070.46290.046*
C100.1150 (6)0.8754 (4)0.2966 (3)0.0472 (11)
H100.20680.92670.27770.057*
C50.4671 (5)0.6541 (3)0.0743 (2)0.0400 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0757 (3)0.0442 (3)0.0583 (3)0.0164 (3)0.0146 (3)0.00538 (19)
O10.0647 (19)0.0356 (16)0.0483 (16)0.0131 (14)0.0155 (15)0.0039 (14)
C80.0306 (19)0.030 (2)0.0313 (19)0.0015 (15)0.0001 (14)0.0022 (15)
C170.0330 (18)0.038 (2)0.0294 (18)0.0019 (16)0.0002 (15)0.0021 (16)
C20.041 (2)0.037 (2)0.0314 (18)0.0044 (18)0.0016 (16)0.0021 (16)
C110.029 (2)0.071 (3)0.053 (3)0.001 (2)0.0018 (19)0.000 (2)
C120.056 (2)0.050 (3)0.043 (2)0.014 (2)0.009 (2)0.0064 (17)
C90.040 (2)0.045 (2)0.0352 (17)0.006 (2)0.0033 (17)0.0085 (15)
C70.0307 (17)0.034 (2)0.0274 (17)0.0012 (15)0.0032 (14)0.0003 (15)
C140.040 (2)0.057 (3)0.0337 (18)0.005 (2)0.0062 (17)0.0110 (17)
C160.036 (2)0.034 (2)0.043 (2)0.0045 (16)0.0017 (15)0.0047 (18)
C60.035 (2)0.037 (2)0.0327 (18)0.0003 (16)0.0008 (14)0.0045 (16)
C40.045 (2)0.057 (3)0.039 (2)0.002 (2)0.0116 (17)0.0006 (19)
C10.056 (2)0.040 (2)0.068 (3)0.010 (3)0.000 (2)0.0100 (19)
C30.050 (3)0.051 (3)0.040 (2)0.013 (2)0.0087 (18)0.0027 (19)
C150.037 (2)0.046 (2)0.046 (2)0.0059 (17)0.0053 (17)0.0051 (19)
C130.040 (2)0.046 (2)0.0274 (18)0.0017 (17)0.0017 (16)0.0017 (17)
C100.036 (2)0.060 (3)0.046 (2)0.018 (2)0.0030 (18)0.007 (2)
C50.045 (2)0.040 (2)0.0353 (18)0.0066 (18)0.0013 (17)0.0023 (16)
Geometric parameters (Å, º) top
Br1—C51.911 (4)C9—H9B0.9900
O1—C21.369 (5)C7—C61.399 (5)
O1—C11.400 (5)C14—C131.516 (6)
C8—C71.533 (5)C14—C151.536 (6)
C8—C171.541 (5)C14—H14A0.9900
C8—C161.544 (5)C14—H14B0.9900
C8—C91.555 (5)C16—C151.525 (6)
C17—C131.531 (5)C16—H16A0.9900
C17—H17A0.9900C16—H16B0.9900
C17—H17B0.9900C6—C51.383 (5)
C2—C31.398 (5)C6—H60.9500
C2—C71.405 (5)C4—C51.373 (6)
C11—C101.523 (7)C4—C31.375 (6)
C11—C151.524 (6)C4—H40.9500
C11—H11A0.9900C1—H1A0.9800
C11—H11B0.9900C1—H1B0.9800
C12—C131.519 (6)C1—H1C0.9800
C12—C101.528 (6)C3—H30.9500
C12—H12A0.9900C15—H151.0000
C12—H12B0.9900C13—H131.0000
C9—C101.535 (6)C10—H101.0000
C9—H9A0.9900
C2—O1—C1119.5 (3)C15—C16—C8111.5 (3)
C7—C8—C17109.7 (3)C15—C16—H16A109.3
C7—C8—C16112.4 (3)C8—C16—H16A109.3
C17—C8—C16106.9 (3)C15—C16—H16B109.3
C7—C8—C9111.4 (3)C8—C16—H16B109.3
C17—C8—C9109.6 (3)H16A—C16—H16B108.0
C16—C8—C9106.7 (3)C5—C6—C7121.4 (4)
C13—C17—C8110.9 (3)C5—C6—H6119.3
C13—C17—H17A109.4C7—C6—H6119.3
C8—C17—H17A109.4C5—C4—C3118.5 (4)
C13—C17—H17B109.4C5—C4—H4120.7
C8—C17—H17B109.4C3—C4—H4120.7
H17A—C17—H17B108.0O1—C1—H1A109.5
O1—C2—C3121.6 (4)O1—C1—H1B109.5
O1—C2—C7117.4 (3)H1A—C1—H1B109.5
C3—C2—C7121.0 (4)O1—C1—H1C109.5
C10—C11—C15109.1 (3)H1A—C1—H1C109.5
C10—C11—H11A109.9H1B—C1—H1C109.5
C15—C11—H11A109.9C4—C3—C2120.9 (4)
C10—C11—H11B109.9C4—C3—H3119.6
C15—C11—H11B109.9C2—C3—H3119.6
H11A—C11—H11B108.3C11—C15—C16109.9 (3)
C13—C12—C10109.3 (3)C11—C15—C14109.2 (4)
C13—C12—H12A109.8C16—C15—C14109.4 (3)
C10—C12—H12A109.8C11—C15—H15109.5
C13—C12—H12B109.8C16—C15—H15109.5
C10—C12—H12B109.8C14—C15—H15109.5
H12A—C12—H12B108.3C14—C13—C12110.3 (3)
C10—C9—C8110.1 (3)C14—C13—C17109.1 (3)
C10—C9—H9A109.6C12—C13—C17109.7 (3)
C8—C9—H9A109.6C14—C13—H13109.2
C10—C9—H9B109.6C12—C13—H13109.2
C8—C9—H9B109.6C17—C13—H13109.2
H9A—C9—H9B108.2C11—C10—C12109.9 (4)
C6—C7—C2116.7 (3)C11—C10—C9109.7 (4)
C6—C7—C8120.5 (3)C12—C10—C9109.7 (3)
C2—C7—C8122.8 (3)C11—C10—H10109.1
C13—C14—C15109.1 (3)C12—C10—H10109.1
C13—C14—H14A109.9C9—C10—H10109.1
C15—C14—H14A109.9C4—C5—C6121.5 (4)
C13—C14—H14B109.9C4—C5—Br1119.5 (3)
C15—C14—H14B109.9C6—C5—Br1119.0 (3)
H14A—C14—H14B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.992.353.003 (5)123
C17—H17B···O10.992.353.004 (4)123
C4—H4···Cgi0.952.663.568 (5)161
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H21BrO
Mr321.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)7.3815 (11), 13.2067 (19), 15.067 (2)
V3)1468.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.30 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.438, 0.492
No. of measured, independent and
observed [I > 2σ(I)] reflections
12697, 2580, 2279
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 0.86
No. of reflections2580
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.59
Absolute structureFlack (1983), with 1072 Friedel pairs
Absolute structure parameter0.340 (15)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.992.353.003 (5)123
C17—H17B···O10.992.353.004 (4)123
C4—H4···Cgi0.952.663.568 (5)161
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The author acknowledges financial support from Zhejiang Police College, China.

References

First citationAmoureux, J. P. & Bee, M. (1980). Acta Cryst. B36, 2636–2642.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmoureux, J. P., Bee, M. & Damien, J. C. (1980). Acta Cryst. B36, 2633–2636.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAntibes, B. S., Grasse, J. E. & Nice, J. B. (1988). US Patent 4 717 720.  Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChomienne, C., Ballerini, P., Balitrand, N., Amor, M., Bernard, J. F., Boivin, P., Daniel, M. T., Berger, R., Castaigne, S. & Degos, L. (1994). Lancet ii, 344, 746–747.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNordman, C. E. & Schmitkons, D. L. (1965). Acta Cryst. 18, 764–767.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPouwer, R. H., Harper, J. B., Vyakaranam, K., Michl, J., Williams, C. M., Jessen, C. H. & Bernhardt, P. V. (2007). Eur. J. Org. Chem. pp. 241–248.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds