metal-organic compounds
catena-Poly[[bis(methanol-κO)bis(pyridine-κN)nickel(II)]-μ-tetrafluoroterephthalato-κ2O:O′]
aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: cgzheng@126.com
In the title compound, [Ni(C8F4O4)(C5H5N)2(CH4O)2]n, the NiII ion is located on an inversion center and is coordinated by four O atoms [Ni—O = 2.079 (4) Å] from two tetrafluoroterephthalate ligands and two methanol molecules, and by two N atoms [Ni—N = 2.127 (4) Å] from two pyridine ligands in a distorted octahedral geometry. The NiII ions are connected via the tetrafluoroterephthalate anions into a one-dimensional chain running along the crystallographic [011] direction.
Related literature
For useful applications of supramolecular coordination polymers, see: Janiak (2003); Rao et al. (2004); James (2003); Dietzel et al. (2005); Zhang et al. (2007). For related crystal structures, see: Kim et al. (2003); Go et al. (2004); Wang et al. (2003); Śledź et al. (2001); Li et al. (2003); Rosi et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808016619/cv2417sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016619/cv2417Isup2.hkl
All the reagents and solvents employed were commercially available, and tetrafluoroterephthalaic acid was purified by recrystallization. The title compound was prepared according to the literature procedure of Rosi et al. (2005).
Tetrafluoroterephthalaic acid (0.0714 g, 0.30 mmol) and Ni(NO3)2.6H2O (0.0436 g, 0.15 mmol) were placed in a small vial and dissolved in a mixture of methanol (3 ml) and acetonitrile (3 ml) at room temperature. The vial was then placed in a larger vial containing pyridine (4 ml), which was sealed and left undisturbed for 7 d at room temperature. The resulting green block-shaped crystals were collected by filtration, washed with methanol (3 ml), and air dried to give the title complex (0.06 g, 77% yield). Elemental analysis (%) calcd. for C20H18F4N2NiO6: C, 46.45%; H, 3.51%; N, 5.42%; Found: C,46.48%; H, 3.55%; N, 5.38%.
All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H and O—H distances of 0.91–0.97 Å, and Uiso(H) = 1.2–1.5 times of those of their parent atoms (Å2).
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C8F4O4)(C5H5N)2(CH4O)2] | Z = 1 |
Mr = 517.07 | F(000) = 264 |
Triclinic, P1 | Dx = 1.588 Mg m−3 |
Hall symbol: -P1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9159 (7) Å | Cell parameters from 409 reflections |
b = 8.8846 (8) Å | θ = 3.7–18.2° |
c = 9.0219 (14) Å | µ = 0.97 mm−1 |
α = 100.442 (9)° | T = 273 K |
β = 101.559 (9)° | Block, green |
γ = 114.396 (6)° | 0.15 × 0.12 × 0.10 mm |
V = 540.78 (11) Å3 |
Bruker APEXII CCD area-detector diffractometer | 1901 independent reflections |
Radiation source: fine-focus sealed tube | 1210 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ϕ and ω scans | θmax = 25.0°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −9→9 |
Tmin = 0.868, Tmax = 0.909 | k = −8→10 |
3004 measured reflections | l = −10→10 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.065 | w = 1/[σ^2^(Fo^2^) + (0.076P)^2^ + 0.2195P], P = (Fo^2^ + 2Fc^2^)/3 |
wR(F2) = 0.168 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.67 e Å−3 |
1901 reflections | Δρmin = −0.47 e Å−3 |
151 parameters |
[Ni(C8F4O4)(C5H5N)2(CH4O)2] | γ = 114.396 (6)° |
Mr = 517.07 | V = 540.78 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.9159 (7) Å | Mo Kα radiation |
b = 8.8846 (8) Å | µ = 0.97 mm−1 |
c = 9.0219 (14) Å | T = 273 K |
α = 100.442 (9)° | 0.15 × 0.12 × 0.10 mm |
β = 101.559 (9)° |
Bruker APEXII CCD area-detector diffractometer | 1901 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1210 reflections with I > 2σ(I) |
Tmin = 0.868, Tmax = 0.909 | Rint = 0.045 |
3004 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 2 restraints |
wR(F2) = 0.168 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.67 e Å−3 |
1901 reflections | Δρmin = −0.47 e Å−3 |
151 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.0000 | 0.0000 | 0.0463 (4) | |
O1 | −0.0204 (5) | 0.1748 (4) | 0.1738 (4) | 0.0514 (10) | |
O2 | 0.2732 (7) | 0.2924 (6) | 0.3536 (5) | 0.0893 (16) | |
O3 | 0.2791 (6) | 0.0643 (5) | 0.1351 (4) | 0.0642 (12) | |
H3 | 0.2848 | 0.1228 | 0.2320 | 0.096* | |
N1 | 0.1405 (7) | 0.2043 (5) | −0.0943 (5) | 0.0495 (12) | |
F1 | 0.2568 (6) | 0.6330 (4) | 0.3438 (4) | 0.0798 (12) | |
F2 | −0.1649 (6) | 0.1587 (4) | 0.4752 (4) | 0.0770 (11) | |
C1 | 0.1084 (10) | 0.2749 (7) | 0.3031 (7) | 0.0525 (14) | |
C2 | 0.0498 (8) | 0.3903 (7) | 0.4030 (6) | 0.0476 (13) | |
C3 | −0.0823 (9) | 0.3286 (7) | 0.4841 (6) | 0.0523 (14) | |
C4 | 0.1304 (8) | 0.5655 (7) | 0.4223 (6) | 0.0538 (15) | |
C5 | 0.2384 (9) | 0.1849 (8) | −0.1928 (7) | 0.0636 (16) | |
H5 | 0.2395 | 0.0793 | −0.2204 | 0.076* | |
C6 | 0.3374 (10) | 0.3084 (10) | −0.2565 (8) | 0.0781 (19) | |
H6 | 0.4006 | 0.2858 | −0.3274 | 0.094* | |
C7 | 0.3426 (10) | 0.4657 (10) | −0.2148 (8) | 0.078 (2) | |
H7 | 0.4120 | 0.5537 | −0.2543 | 0.093* | |
C8 | 0.2427 (11) | 0.4911 (9) | −0.1129 (8) | 0.079 (2) | |
H8 | 0.2415 | 0.5964 | −0.0830 | 0.095* | |
C9 | 0.1441 (10) | 0.3574 (8) | −0.0557 (7) | 0.0643 (16) | |
H9 | 0.0767 | 0.3754 | 0.0133 | 0.077* | |
C10 | 0.3668 (15) | −0.0333 (11) | 0.1774 (13) | 0.148 (5) | |
H10A | 0.3276 | −0.0734 | 0.2628 | 0.222* | |
H10B | 0.5059 | 0.0361 | 0.2107 | 0.222* | |
H10C | 0.3283 | −0.1308 | 0.0882 | 0.222* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0591 (8) | 0.0449 (6) | 0.0396 (6) | 0.0293 (5) | 0.0189 (5) | 0.0065 (4) |
O1 | 0.066 (3) | 0.050 (2) | 0.040 (2) | 0.033 (2) | 0.018 (2) | 0.0029 (18) |
O2 | 0.078 (3) | 0.108 (4) | 0.063 (3) | 0.056 (3) | 0.004 (3) | −0.029 (3) |
O3 | 0.069 (3) | 0.074 (3) | 0.051 (2) | 0.044 (2) | 0.017 (2) | 0.000 (2) |
N1 | 0.056 (3) | 0.049 (3) | 0.046 (3) | 0.026 (2) | 0.018 (2) | 0.012 (2) |
F1 | 0.103 (3) | 0.071 (2) | 0.083 (3) | 0.040 (2) | 0.064 (2) | 0.0212 (19) |
F2 | 0.102 (3) | 0.051 (2) | 0.086 (3) | 0.035 (2) | 0.052 (2) | 0.0126 (18) |
C1 | 0.065 (4) | 0.053 (3) | 0.041 (3) | 0.030 (3) | 0.022 (3) | 0.005 (3) |
C2 | 0.054 (3) | 0.047 (3) | 0.038 (3) | 0.025 (3) | 0.015 (3) | −0.002 (2) |
C3 | 0.064 (4) | 0.044 (3) | 0.046 (3) | 0.027 (3) | 0.019 (3) | 0.003 (2) |
C4 | 0.062 (4) | 0.062 (4) | 0.043 (3) | 0.031 (3) | 0.027 (3) | 0.009 (3) |
C5 | 0.076 (4) | 0.066 (4) | 0.063 (4) | 0.039 (3) | 0.036 (3) | 0.022 (3) |
C6 | 0.072 (4) | 0.089 (5) | 0.081 (4) | 0.032 (4) | 0.037 (4) | 0.038 (4) |
C7 | 0.067 (4) | 0.077 (4) | 0.074 (4) | 0.014 (4) | 0.016 (4) | 0.039 (4) |
C8 | 0.097 (5) | 0.055 (4) | 0.077 (4) | 0.031 (4) | 0.018 (4) | 0.024 (3) |
C9 | 0.086 (4) | 0.056 (3) | 0.058 (3) | 0.036 (3) | 0.029 (3) | 0.017 (3) |
C10 | 0.141 (8) | 0.102 (6) | 0.174 (10) | 0.092 (7) | −0.036 (7) | −0.014 (6) |
Ni1—O3 | 2.079 (4) | C2—C3 | 1.381 (7) |
Ni1—O3i | 2.079 (4) | C3—C4ii | 1.371 (7) |
Ni1—O1i | 2.079 (3) | C4—C3ii | 1.371 (7) |
Ni1—O1 | 2.079 (3) | C5—C6 | 1.359 (8) |
Ni1—N1i | 2.127 (4) | C5—H5 | 0.9300 |
Ni1—N1 | 2.127 (4) | C6—C7 | 1.361 (9) |
O1—C1 | 1.261 (6) | C6—H6 | 0.9300 |
O2—C1 | 1.226 (7) | C7—C8 | 1.373 (10) |
O3—C10 | 1.375 (8) | C7—H7 | 0.9300 |
O3—H3 | 0.9147 | C8—C9 | 1.379 (9) |
N1—C5 | 1.323 (7) | C8—H8 | 0.9300 |
N1—C9 | 1.329 (7) | C9—H9 | 0.9300 |
F1—C4 | 1.343 (6) | C10—H10A | 0.9600 |
F2—C3 | 1.354 (6) | C10—H10B | 0.9600 |
C1—C2 | 1.518 (7) | C10—H10C | 0.9600 |
C2—C4 | 1.377 (7) | ||
O3—Ni1—O3i | 180.0 (3) | F2—C3—C4ii | 118.0 (5) |
O3—Ni1—O1i | 88.71 (14) | F2—C3—C2 | 119.6 (5) |
O3i—Ni1—O1i | 91.29 (14) | C4ii—C3—C2 | 122.3 (5) |
O3—Ni1—O1 | 91.29 (14) | F1—C4—C3ii | 119.4 (5) |
O3i—Ni1—O1 | 88.71 (14) | F1—C4—C2 | 118.5 (5) |
O1i—Ni1—O1 | 180.0 (2) | C3ii—C4—C2 | 122.1 (5) |
O3—Ni1—N1i | 94.29 (17) | N1—C5—C6 | 124.6 (6) |
O3i—Ni1—N1i | 85.71 (17) | N1—C5—H5 | 117.7 |
O1i—Ni1—N1i | 89.23 (15) | C6—C5—H5 | 117.7 |
O1—Ni1—N1i | 90.77 (15) | C5—C6—C7 | 119.0 (7) |
O3—Ni1—N1 | 85.71 (17) | C5—C6—H6 | 120.5 |
O3i—Ni1—N1 | 94.29 (17) | C7—C6—H6 | 120.5 |
O1i—Ni1—N1 | 90.77 (15) | C6—C7—C8 | 118.2 (7) |
O1—Ni1—N1 | 89.23 (15) | C6—C7—H7 | 120.9 |
N1i—Ni1—N1 | 180.00 (19) | C8—C7—H7 | 120.9 |
C1—O1—Ni1 | 127.3 (4) | C7—C8—C9 | 118.8 (6) |
C10—O3—Ni1 | 132.9 (5) | C7—C8—H8 | 120.6 |
C10—O3—H3 | 101.1 | C9—C8—H8 | 120.6 |
Ni1—O3—H3 | 101.3 | N1—C9—C8 | 123.3 (6) |
C5—N1—C9 | 116.1 (5) | N1—C9—H9 | 118.3 |
C5—N1—Ni1 | 119.8 (4) | C8—C9—H9 | 118.3 |
C9—N1—Ni1 | 124.0 (4) | O3—C10—H10A | 109.5 |
O2—C1—O1 | 127.9 (5) | O3—C10—H10B | 109.5 |
O2—C1—C2 | 117.6 (5) | H10A—C10—H10B | 109.5 |
O1—C1—C2 | 114.4 (5) | O3—C10—H10C | 109.5 |
C4—C2—C3 | 115.6 (5) | H10A—C10—H10C | 109.5 |
C4—C2—C1 | 121.7 (5) | H10B—C10—H10C | 109.5 |
C3—C2—C1 | 122.6 (5) | ||
O3—Ni1—O1—C1 | 1.8 (5) | Ni1—O1—C1—C2 | 178.6 (3) |
O3i—Ni1—O1—C1 | −178.2 (5) | O2—C1—C2—C4 | 69.3 (8) |
O1i—Ni1—O1—C1 | −146 (100) | O1—C1—C2—C4 | −108.6 (6) |
N1i—Ni1—O1—C1 | 96.1 (5) | O2—C1—C2—C3 | −108.6 (7) |
N1—Ni1—O1—C1 | −83.9 (5) | O1—C1—C2—C3 | 73.5 (7) |
O3i—Ni1—O3—C10 | 142 (100) | C4—C2—C3—F2 | −178.3 (5) |
O1i—Ni1—O3—C10 | −48.5 (8) | C1—C2—C3—F2 | −0.3 (8) |
O1—Ni1—O3—C10 | 131.5 (8) | C4—C2—C3—C4ii | 0.1 (9) |
N1i—Ni1—O3—C10 | 40.6 (8) | C1—C2—C3—C4ii | 178.1 (5) |
N1—Ni1—O3—C10 | −139.4 (8) | C3—C2—C4—F1 | −178.6 (5) |
O3—Ni1—N1—C5 | 72.0 (4) | C1—C2—C4—F1 | 3.4 (8) |
O3i—Ni1—N1—C5 | −108.0 (4) | C3—C2—C4—C3ii | −0.1 (9) |
O1i—Ni1—N1—C5 | −16.7 (4) | C1—C2—C4—C3ii | −178.2 (5) |
O1—Ni1—N1—C5 | 163.3 (4) | C9—N1—C5—C6 | −0.8 (9) |
N1i—Ni1—N1—C5 | −169 (100) | Ni1—N1—C5—C6 | −178.2 (5) |
O3—Ni1—N1—C9 | −105.2 (5) | N1—C5—C6—C7 | 1.8 (10) |
O3i—Ni1—N1—C9 | 74.8 (5) | C5—C6—C7—C8 | −1.7 (10) |
O1i—Ni1—N1—C9 | 166.2 (5) | C6—C7—C8—C9 | 0.9 (10) |
O1—Ni1—N1—C9 | −13.8 (5) | C5—N1—C9—C8 | 0.0 (9) |
N1i—Ni1—N1—C9 | 14 (100) | Ni1—N1—C9—C8 | 177.2 (5) |
Ni1—O1—C1—O2 | 0.9 (9) | C7—C8—C9—N1 | 0.0 (10) |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8F4O4)(C5H5N)2(CH4O)2] |
Mr | 517.07 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 273 |
a, b, c (Å) | 7.9159 (7), 8.8846 (8), 9.0219 (14) |
α, β, γ (°) | 100.442 (9), 101.559 (9), 114.396 (6) |
V (Å3) | 540.78 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.97 |
Crystal size (mm) | 0.15 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.868, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3004, 1901, 1210 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.168, 1.04 |
No. of reflections | 1901 |
No. of parameters | 151 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.47 |
Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
This work was supported by the Center of Analysis and Testing of Jiangnan University, and the Research Institute of Elemento-organic Chemistry of Taishan College.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvåg, H. (2005). Angew. Chem. Int. Ed. 44, 6354–6358. Web of Science CSD CrossRef CAS Google Scholar
Go, Y. B., Wang, X. Q., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360–5367. Web of Science CSD CrossRef PubMed CAS Google Scholar
James, S. (2003). Chem. Soc. Rev. 32, 276–288. Web of Science CrossRef PubMed CAS Google Scholar
Janiak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781–2804. CrossRef Google Scholar
Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 474–477. Web of Science CSD CrossRef CAS Google Scholar
Li, Y. G., Hao, N., Lu, Y., Wang, E. B., Kang, Z. H. & Hu, C. J. (2003). Inorg. Chem. 42, 3119–3124. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Śledź, M., Janczak, J. & Kubiak, R. (2001). J. Mol. Struct. 595, 77–82. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L. Y., Liu, Z. L., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem. Commun. 6, 630–633. Web of Science CSD CrossRef CAS Google Scholar
Zhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291–4295. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular coordination polymers have attracted considerable interest recently due to their intriguing network topologies and their potential applications as gas storage systems, sensors, catalysis, ion exchange materials and magnetic materials (Janiak, 2003; Rao et al., 2004; James, 2003; Dietzel et al., 2005). Chemical modification with the organic ligand can be carried out for constructing materials of different properties. Some research work in computational study suggests that adsorption property in gas storage can be improved with electronegative atoms in the organic linkers or frameworks (Zhang et al., 2007). New topologies with favorable properties will be achieved by introducing some strong electronegative atoms (e.g. Halogen atoms) to in the aromatic ring.
The one-dimensional linear electronically neutral chains of the title nickel(II) complex, (I) (Fig. 1), crystallizes in the triclinic space group P1. The tetrafluoroterephthalate ligands are coordinated to nickel(II) ion in one monodentate pattern. In the octahedron unit, two O atoms from the tetrafluoroterephthalate ligands and two N atoms from pyridine molecules form the equatorial plane. The axial positions are occupied by O atoms from two methanol molecules with a O—Ni—O angle of 180.0 (3)°. The equatorial plane and pyridyl ring form a dihedral angle of 15.2 (1)°. The Ni—O bond lengths are 2.079 (3) and 2.079 (4) Å and agree well with the reported values in related structures (Kim et al., 2003; Go et al., 2004). Both of the Ni—N bond lengths are 2.127 (4) Å, which are comparable with reported values in the similar complexes (Wang et al., 2003; Li et al., 2003). In the aromatic ring system, the bond lengths and bond angles are slightly larger than that in reported terephthalaic acid (Śledź et al., 2001). In addition, the hydroxyl groups of methanol molecules act as donors in O—H···O hydrogen bonds (Table 1).