organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2-o-Tolyl­benzamidine

aInstitute of Applied Chemistry, Shanxi University, Shanxi 030006, People's Republic of China
*Correspondence e-mail: tong@sxu.edu.cn

(Received 2 June 2008; accepted 11 June 2008; online 19 June 2008)

The asymmetric unit of the title compound, C14H14N2, contains two independent mol­ecules with slightly different conformations; the dihedral angles formed by aromatic rings in the two mol­ecules are 73.2 (1) and 75.0 (1)°. Inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into chains extended in the [100] direction.

Related literature

For general background, see Bourget-Merle et al. (2002[Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031-3065.]). For a related crystal structure, see Surma et al. (1988[Surma, K., Jaskólski, M., Kosturkiewicz, Z. & Oszczapowicz, J. (1988). Acta Cryst. C44, 1031-1033.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2

  • Mr = 210.27

  • Triclinic, [P \overline 1]

  • a = 10.347 (2) Å

  • b = 10.697 (2) Å

  • c = 11.495 (2) Å

  • α = 97.088 (4)°

  • β = 103.184 (4)°

  • γ = 95.898 (4)°

  • V = 1218.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.986

  • 4978 measured reflections

  • 4158 independent reflections

  • 2913 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.235

  • S = 1.09

  • 4158 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3 0.86 2.25 3.049 (3) 156
N4—H4B⋯N1i 0.86 2.24 3.016 (3) 151
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

β-Diketiminate complexes are among the most common chelate systems in coordination chemistry (Bourget-Merle et al., 2002). Inspired by getting new chelate system with amidine motif, we got the title compound (I) by additional reaction of PhCN with o-methyl aniline lithium.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), denoted A and B. The N=C bond lengths in both molecules (Table 1) agree well with the corresponding values reported for similar compounds (Surma et al., 1988). The conformations of the two independent molecules are slightly different. In molecule A, the mean plane N3/C22/N4 makes dihedral angles of 85.3 (1) and 21.5 (1)° with phenyl rings C16–C21and C23–C28, respectively. In molecule B, the mean plane N1/C8/N2 makes dihedral angles 86.8 (1) and 18.2 (1)° with phenyl rings C2–C7 and C9–C14, respectively.

In the crystal, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules into chains extended in direction [100].

Related literature top

For general background, see Bourget-Merle et al. (2002). For a related crystal structure, see Surma et al. (1988).

Experimental top

All experiments were performed under an atmosphere of pure argon using Schlenk apparatus and a vacuum line, unless otherwise stated. The solvents used were of reagent grade or better and were freshly distilled under dry dinitrogen and degassed prior to use. Slowly added PhCN(1.03 g,10 mmol)to the solution of compound o-methyl-PhNHLi (1.13 g,10 mmol) in hexane (ca 40 ml)at -0°C., and then stirred for further 12 h.Add it to cold water, and then use chlorform to extract organic phase.The organic phase was slowly concentrated and get the crystal of the title compound.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and Uiso = 1.2–1.5 Ueq(parent atom).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
N2-o-Tolylbenzamidine top
Crystal data top
C14H14N2Z = 4
Mr = 210.27F(000) = 448
Triclinic, P1Dx = 1.147 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.347 (2) ÅCell parameters from 2024 reflections
b = 10.697 (2) Åθ = 2.4–27.7°
c = 11.495 (2) ŵ = 0.07 mm1
α = 97.088 (4)°T = 298 K
β = 103.184 (4)°Plate, colourless
γ = 95.898 (4)°0.30 × 0.20 × 0.20 mm
V = 1218.0 (4) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
4158 independent reflections
Radiation source: fine-focus sealed tube2913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1012
Tmin = 0.980, Tmax = 0.986k = 1212
4978 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.235H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1497P)2]
where P = (Fo2 + 2Fc2)/3
4158 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C14H14N2γ = 95.898 (4)°
Mr = 210.27V = 1218.0 (4) Å3
Triclinic, P1Z = 4
a = 10.347 (2) ÅMo Kα radiation
b = 10.697 (2) ŵ = 0.07 mm1
c = 11.495 (2) ÅT = 298 K
α = 97.088 (4)°0.30 × 0.20 × 0.20 mm
β = 103.184 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2913 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.021
4978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.235H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
4158 reflectionsΔρmin = 0.46 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.90491 (17)0.79986 (19)0.88806 (17)0.0538 (5)
N20.69224 (19)0.8197 (2)0.9148 (2)0.0688 (6)
H2A0.67260.85820.85300.083*
H2B0.63430.80550.95640.083*
C10.7749 (4)0.6552 (3)0.6545 (3)0.1043 (12)
H1A0.71960.62740.57440.156*
H1B0.72510.63620.71260.156*
H1C0.85270.61210.66590.156*
C20.8172 (3)0.7949 (3)0.6711 (2)0.0644 (7)
C30.8023 (3)0.8623 (3)0.5739 (3)0.0852 (9)
H30.76540.81800.49650.102*
C40.8387 (4)0.9873 (4)0.5865 (3)0.0972 (11)
H40.82481.02850.51890.117*
C50.8971 (4)1.0561 (3)0.7000 (3)0.0927 (10)
H50.92361.14330.70960.111*
C60.9149 (3)0.9920 (3)0.7983 (3)0.0680 (7)
H60.95431.03710.87490.082*
C70.8762 (2)0.8639 (2)0.7862 (2)0.0508 (6)
C80.81298 (19)0.7817 (2)0.9464 (2)0.0478 (5)
C90.8415 (2)0.7144 (2)1.05346 (19)0.0490 (6)
C100.9449 (3)0.6419 (2)1.0709 (2)0.0647 (7)
H100.99740.63531.01520.078*
C110.9718 (3)0.5790 (3)1.1693 (3)0.0786 (8)
H111.04270.53131.17960.094*
C120.8962 (3)0.5858 (3)1.2516 (3)0.0787 (8)
H120.91480.54271.31770.094*
C130.7939 (3)0.6555 (4)1.2367 (3)0.0889 (10)
H130.74110.65941.29220.107*
C140.7669 (3)0.7217 (3)1.1390 (3)0.0772 (8)
H140.69770.77151.13120.093*
N30.42879 (17)0.78365 (18)0.99087 (16)0.0513 (5)
N40.20510 (18)0.8125 (2)0.96875 (18)0.0692 (7)
H4A0.21610.83481.04520.083*
H4B0.12750.80980.92060.083*
C150.3694 (4)0.5807 (3)1.1207 (3)0.0896 (9)
H15A0.36150.52601.17960.134*
H15B0.43090.55191.07550.134*
H15C0.28320.57901.06670.134*
C160.4201 (2)0.7134 (3)1.1833 (2)0.0616 (7)
C170.4444 (3)0.7462 (4)1.3083 (3)0.0825 (9)
H170.42770.68301.35380.099*
C180.4913 (3)0.8661 (4)1.3665 (3)0.0901 (10)
H180.50500.88431.45000.108*
C190.5182 (3)0.9601 (3)1.3013 (3)0.0863 (9)
H190.55131.04241.34050.104*
C200.4963 (2)0.9325 (3)1.1778 (2)0.0642 (7)
H200.51550.99651.13400.077*
C210.44635 (19)0.8118 (2)1.1180 (2)0.0495 (6)
C220.3093 (2)0.7819 (2)0.9244 (2)0.0484 (6)
C230.2832 (2)0.7442 (2)0.7916 (2)0.0515 (6)
C240.1744 (3)0.7776 (3)0.7119 (2)0.0671 (7)
H240.11610.82620.74160.081*
C250.1519 (3)0.7395 (3)0.5887 (3)0.0783 (8)
H250.07830.76210.53640.094*
C260.2365 (3)0.6692 (3)0.5435 (3)0.0816 (9)
H260.22140.64420.46060.098*
C270.3439 (3)0.6357 (3)0.6208 (3)0.0833 (9)
H270.40200.58780.59000.100*
C280.3671 (3)0.6717 (3)0.7434 (2)0.0671 (7)
H280.44020.64710.79470.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0370 (9)0.0696 (13)0.0553 (11)0.0099 (8)0.0100 (8)0.0120 (9)
N20.0402 (10)0.0939 (16)0.0826 (15)0.0198 (10)0.0210 (9)0.0325 (12)
C10.136 (3)0.0662 (19)0.087 (2)0.0047 (19)0.008 (2)0.0009 (16)
C20.0606 (15)0.0661 (16)0.0609 (16)0.0095 (12)0.0040 (12)0.0082 (12)
C30.097 (2)0.090 (2)0.0601 (17)0.0134 (18)0.0004 (15)0.0146 (15)
C40.113 (3)0.091 (2)0.085 (2)0.006 (2)0.0080 (19)0.0392 (19)
C50.104 (2)0.0664 (18)0.102 (3)0.0002 (17)0.011 (2)0.0254 (18)
C60.0624 (15)0.0669 (17)0.0694 (17)0.0030 (12)0.0100 (12)0.0065 (13)
C70.0348 (10)0.0583 (14)0.0591 (14)0.0068 (9)0.0100 (9)0.0097 (11)
C80.0341 (10)0.0521 (12)0.0541 (13)0.0056 (9)0.0086 (9)0.0012 (10)
C90.0395 (11)0.0524 (13)0.0521 (13)0.0010 (9)0.0099 (9)0.0036 (10)
C100.0629 (15)0.0667 (15)0.0732 (17)0.0202 (12)0.0252 (12)0.0186 (13)
C110.084 (2)0.0766 (19)0.085 (2)0.0262 (15)0.0248 (16)0.0298 (16)
C120.081 (2)0.083 (2)0.0711 (18)0.0027 (16)0.0123 (15)0.0273 (15)
C130.081 (2)0.129 (3)0.0676 (18)0.020 (2)0.0328 (15)0.0283 (18)
C140.0590 (16)0.111 (2)0.0723 (18)0.0303 (16)0.0254 (13)0.0215 (16)
N30.0377 (10)0.0634 (12)0.0546 (11)0.0068 (8)0.0148 (8)0.0084 (9)
N40.0381 (10)0.1089 (17)0.0584 (12)0.0166 (11)0.0105 (9)0.0006 (12)
C150.102 (2)0.0692 (19)0.097 (2)0.0074 (16)0.0294 (18)0.0172 (16)
C160.0501 (13)0.0753 (17)0.0631 (16)0.0099 (12)0.0184 (11)0.0142 (13)
C170.0803 (19)0.113 (3)0.0645 (18)0.0232 (18)0.0261 (15)0.0285 (18)
C180.091 (2)0.119 (3)0.0580 (17)0.020 (2)0.0182 (16)0.0026 (19)
C190.083 (2)0.092 (2)0.074 (2)0.0097 (17)0.0135 (16)0.0152 (17)
C200.0555 (14)0.0655 (16)0.0695 (17)0.0087 (12)0.0147 (12)0.0029 (13)
C210.0333 (10)0.0609 (14)0.0554 (14)0.0077 (9)0.0138 (9)0.0066 (11)
C220.0373 (11)0.0519 (12)0.0572 (14)0.0038 (9)0.0151 (9)0.0086 (10)
C230.0422 (12)0.0549 (13)0.0571 (14)0.0001 (10)0.0140 (10)0.0094 (10)
C240.0588 (15)0.0825 (18)0.0636 (16)0.0168 (13)0.0156 (12)0.0177 (13)
C250.0736 (18)0.097 (2)0.0599 (17)0.0079 (16)0.0039 (14)0.0204 (15)
C260.083 (2)0.100 (2)0.0561 (16)0.0026 (17)0.0186 (15)0.0018 (15)
C270.0714 (18)0.102 (2)0.0710 (19)0.0136 (16)0.0196 (15)0.0133 (16)
C280.0532 (14)0.0801 (17)0.0639 (16)0.0121 (12)0.0113 (12)0.0014 (13)
Geometric parameters (Å, º) top
N1—C81.295 (3)N3—C221.294 (3)
N1—C71.417 (3)N3—C211.421 (3)
N2—C81.338 (3)N4—C221.346 (3)
N2—H2A0.8600N4—H4A0.8600
N2—H2B0.8600N4—H4B0.8600
C1—C21.490 (4)C15—C161.493 (4)
C1—H1A0.9600C15—H15A0.9600
C1—H1B0.9600C15—H15B0.9600
C1—H1C0.9600C15—H15C0.9600
C2—C31.391 (4)C16—C171.394 (4)
C2—C71.402 (3)C16—C211.405 (3)
C3—C41.332 (4)C17—C181.357 (5)
C3—H30.9300C17—H170.9300
C4—C51.386 (5)C18—C191.368 (5)
C4—H40.9300C18—H180.9300
C5—C61.379 (4)C19—C201.375 (4)
C5—H50.9300C19—H190.9300
C6—C71.369 (3)C20—C211.374 (3)
C6—H60.9300C20—H200.9300
C8—C91.489 (3)C22—C231.485 (3)
C9—C101.377 (3)C23—C281.384 (3)
C9—C141.381 (3)C23—C241.388 (3)
C10—C111.375 (4)C24—C251.383 (4)
C10—H100.9300C24—H240.9300
C11—C121.359 (4)C25—C261.359 (4)
C11—H110.9300C25—H250.9300
C12—C131.347 (4)C26—C271.364 (4)
C12—H120.9300C26—H260.9300
C13—C141.391 (4)C27—C281.373 (4)
C13—H130.9300C27—H270.9300
C14—H140.9300C28—H280.9300
C8—N1—C7118.20 (18)C22—N3—C21116.93 (17)
C8—N2—H2A120.0C22—N4—H4A120.0
C8—N2—H2B120.0C22—N4—H4B120.0
H2A—N2—H2B120.0H4A—N4—H4B120.0
C2—C1—H1A109.5C16—C15—H15A109.5
C2—C1—H1B109.5C16—C15—H15B109.5
H1A—C1—H1B109.5H15A—C15—H15B109.5
C2—C1—H1C109.5C16—C15—H15C109.5
H1A—C1—H1C109.5H15A—C15—H15C109.5
H1B—C1—H1C109.5H15B—C15—H15C109.5
C3—C2—C7117.1 (3)C17—C16—C21116.7 (3)
C3—C2—C1121.9 (3)C17—C16—C15122.3 (3)
C7—C2—C1121.0 (3)C21—C16—C15121.1 (2)
C4—C3—C2123.0 (3)C18—C17—C16122.9 (3)
C4—C3—H3118.5C18—C17—H17118.5
C2—C3—H3118.5C16—C17—H17118.5
C3—C4—C5120.2 (3)C17—C18—C19119.4 (3)
C3—C4—H4119.9C17—C18—H18120.3
C5—C4—H4119.9C19—C18—H18120.3
C6—C5—C4118.3 (3)C18—C19—C20119.8 (3)
C6—C5—H5120.9C18—C19—H19120.1
C4—C5—H5120.9C20—C19—H19120.1
C7—C6—C5121.8 (3)C21—C20—C19121.0 (3)
C7—C6—H6119.1C21—C20—H20119.5
C5—C6—H6119.1C19—C20—H20119.5
C6—C7—C2119.5 (2)C20—C21—C16120.1 (2)
C6—C7—N1120.1 (2)C20—C21—N3120.4 (2)
C2—C7—N1120.2 (2)C16—C21—N3119.4 (2)
N1—C8—N2123.3 (2)N3—C22—N4123.7 (2)
N1—C8—C9118.86 (18)N3—C22—C23119.19 (19)
N2—C8—C9117.84 (19)N4—C22—C23117.14 (19)
C10—C9—C14117.2 (2)C28—C23—C24117.7 (2)
C10—C9—C8120.7 (2)C28—C23—C22120.2 (2)
C14—C9—C8122.1 (2)C24—C23—C22122.1 (2)
C11—C10—C9121.2 (3)C25—C24—C23120.7 (3)
C11—C10—H10119.4C25—C24—H24119.7
C9—C10—H10119.4C23—C24—H24119.7
C12—C11—C10120.8 (3)C26—C25—C24120.5 (3)
C12—C11—H11119.6C26—C25—H25119.8
C10—C11—H11119.6C24—C25—H25119.8
C13—C12—C11119.5 (3)C25—C26—C27119.5 (3)
C13—C12—H12120.3C25—C26—H26120.2
C11—C12—H12120.3C27—C26—H26120.2
C12—C13—C14120.5 (3)C26—C27—C28120.8 (3)
C12—C13—H13119.8C26—C27—H27119.6
C14—C13—H13119.8C28—C27—H27119.6
C9—C14—C13120.9 (3)C27—C28—C23120.9 (3)
C9—C14—H14119.6C27—C28—H28119.6
C13—C14—H14119.6C23—C28—H28119.6
C7—C2—C3—C41.5 (5)C21—C16—C17—C180.1 (4)
C1—C2—C3—C4179.6 (3)C15—C16—C17—C18179.6 (3)
C2—C3—C4—C51.5 (6)C16—C17—C18—C190.9 (5)
C3—C4—C5—C60.6 (6)C17—C18—C19—C200.7 (5)
C4—C5—C6—C70.2 (5)C18—C19—C20—C210.6 (4)
C5—C6—C7—C20.2 (4)C19—C20—C21—C161.6 (3)
C5—C6—C7—N1175.4 (3)C19—C20—C21—N3177.7 (2)
C3—C2—C7—C60.6 (4)C17—C16—C21—C201.4 (3)
C1—C2—C7—C6179.5 (3)C15—C16—C21—C20178.3 (3)
C3—C2—C7—N1174.6 (2)C17—C16—C21—N3177.5 (2)
C1—C2—C7—N14.3 (4)C15—C16—C21—N32.2 (3)
C8—N1—C7—C695.6 (3)C22—N3—C21—C2098.8 (2)
C8—N1—C7—C289.2 (3)C22—N3—C21—C1685.1 (3)
C7—N1—C8—N20.4 (3)C21—N3—C22—N44.2 (3)
C7—N1—C8—C9179.91 (19)C21—N3—C22—C23175.76 (19)
N1—C8—C9—C1018.2 (3)N3—C22—C23—C2822.1 (3)
N2—C8—C9—C10161.3 (2)N4—C22—C23—C28157.9 (2)
N1—C8—C9—C14161.7 (2)N3—C22—C23—C24159.0 (2)
N2—C8—C9—C1418.8 (3)N4—C22—C23—C2421.1 (3)
C14—C9—C10—C110.3 (4)C28—C23—C24—C250.1 (4)
C8—C9—C10—C11179.8 (2)C22—C23—C24—C25179.1 (2)
C9—C10—C11—C120.6 (5)C23—C24—C25—C260.4 (4)
C10—C11—C12—C130.3 (5)C24—C25—C26—C270.4 (5)
C11—C12—C13—C141.0 (5)C25—C26—C27—C280.2 (5)
C10—C9—C14—C131.5 (4)C26—C27—C28—C230.7 (5)
C8—C9—C14—C13178.5 (3)C24—C23—C28—C270.7 (4)
C12—C13—C14—C91.9 (5)C22—C23—C28—C27179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N30.862.253.049 (3)156
N4—H4B···N1i0.862.243.016 (3)151
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14N2
Mr210.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.347 (2), 10.697 (2), 11.495 (2)
α, β, γ (°)97.088 (4), 103.184 (4), 95.898 (4)
V3)1218.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.980, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4978, 4158, 2913
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.235, 1.09
No. of reflections4158
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.46

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N30.862.253.049 (3)155.6
N4—H4B···N1i0.862.243.016 (3)150.5
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank the Youth Foundation of Shanxi University (grant No. 2006026, China) for financial support.

References

First citationBourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.  Google Scholar
First citationSurma, K., Jaskólski, M., Kosturkiewicz, Z. & Oszczapowicz, J. (1988). Acta Cryst. C44, 1031–1033.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds