organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1321-o1322

Cucurbit[6]uril p-xylylenedi­ammonium diiodide deca­hydrate inclusion complex

aDepartment of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
*Correspondence e-mail: lisaacs@umd.edu

(Received 4 June 2008; accepted 17 June 2008; online 21 June 2008)

The title inclusion complex, C36H36N24O12·C8H14N22+·2I·10H2O, displays a large ellipsoidal deformation of the cucurbit[6]uril (CB[6]) skeleton upon complex formation. The benzene ring of the cation is rotationally disordered between two orientations in a ratio of 3:1. The solvent H2O mol­ecules form a hydrogen-bonded network by inter­action with the carbonyl groups of CB[6] and the I counterions. The crystal studied exhibited non-merohedral twinning. Both CB[6] and the cation are centrosymmetric.

Related literature

For related literature, see: Bush et al. (2005[Bush, M. E., Bouley, N. D. & Urbach, A. R. (2005). J. Am. Chem. Soc. 127, 14511-14517.]); Freeman et al. (1981[Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7368.]); Freeman (1984[Freeman, W. A. (1984). Acta Cryst. B40, 382-387.]); Henning et al. (2007[Henning, A., Bakirci, H. & Nau, W. M. (2007). Nat. Methods, 4, 629-632.]); Huang et al. (2007[Huang, W.-H., Zavalij, P. Y. & Isaacs, L. (2007). Acta Cryst. E63, o1060-o1062.]); Ko et al. (2007[Ko, Y. H., Kim, E., Hwang, I. & Kim, K. (2007). Chem. Commun. pp. 1305-1315.]); Lagona et al. (2005[Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. (2005). Angew. Chem. Int. Ed. 44, 4844-4870.]); Liu et al. (2005[Liu, S., Ruspic, C., Mukhopadhyay, P., Chakrabarti, S., Zavalij, P. Y. & Isaacs, L. (2005). J. Am. Chem. Soc. 127, 15959-15967.]); Marquez et al. (2004[Marquez, C., Hudgins, R. R. & Nau, W. M. (2004). J. Am. Chem. Soc. 126, 5808-5816.]); Moon & Kaifer (2004[Moon, K. & Kaifer, A. E. (2004). Org. Lett. 6, 185-188.]); Rauwald & Scherman (2008[Rauwald, U. & Scherman, O. (2008). Angew. Chem. Int. Ed. 47, 3950-3953.]); Rekharsky et al. (2008[Rekharsky, M. V., Yamamura, H., Ko, Y. H., Selvapalam, N., Kim, K. & Inoue, Y. (2008). Chem. Commun. pp. 2236-2238.]); Samsonenko et al. (2002[Samsonenko, D. G., Virovets, A. V., Lipkowski, J., Geras'ko, O. A. & Fedin, V. P. (2002). J. Struct. Chem. 43, 664-668.]); Wheate et al. (2006[Wheate, N. J., Buck, D. P., Day, A. I. & Collins, J. G. (2006). Dalton Trans. pp. 451-458.]).

[Scheme 1]

Experimental

Crystal data
  • C36H36N24O12·C8H14N22+·2I·10H2O

  • Mr = 1569.06

  • Monoclinic, P 21 /n

  • a = 11.9987 (9) Å

  • b = 15.9520 (12) Å

  • c = 15.0517 (11) Å

  • β = 92.8520 (10)°

  • V = 2877.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 220 (2) K

  • 0.20 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART 1000 three-circle diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.914

  • 19804 measured reflections

  • 6606 independent reflections

  • 5363 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.083

  • S = 1.00

  • 6606 reflections

  • 475 parameters

  • 33 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.68 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O23i 0.90 2.25 2.861 (5) 124
N1—H1A⋯O33i 0.90 2.27 3.040 (5) 143
N1—H1B⋯O1W 0.90 1.99 2.833 (5) 155
N1—H1B⋯O3Wii 0.90 2.39 2.922 (6) 118
N1—H1C⋯O13i 0.90 2.01 2.910 (5) 175
O1W—H11W⋯O34ii 0.843 (19) 2.19 (3) 2.837 (4) 133 (4)
O1W—H12W⋯O2W 0.852 (19) 1.80 (2) 2.655 (6) 175 (6)
O2W—H21W⋯O5W 0.870 (18) 2.21 (3) 2.973 (6) 146 (5)
O2W—H22W⋯O24 0.85 (2) 1.91 (3) 2.712 (5) 157 (7)
O3W—H31W⋯O5W 0.870 (18) 1.97 (2) 2.820 (7) 167 (4)
O3W—H32W⋯O34 0.892 (19) 2.23 (4) 2.847 (5) 126 (4)
O4W—H41W⋯O14 0.831 (19) 2.51 (5) 3.198 (5) 141 (6)
O4W—H42W⋯O1W 0.835 (19) 2.11 (5) 2.823 (6) 143 (7)
O5W—H51W⋯I1iii 0.82 (2) 2.80 (3) 3.601 (4) 167 (6)
O5W—H52W⋯I1 0.824 (19) 2.80 (4) 3.573 (4) 157 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In supramolecular chemistry of the cucurbit[n]uril family of molecular containers has expanded dramatically in recent years with the preparation of a homologous series of hosts (e.g. CB[n], n = 5, 6, 7, 8, 10), inverted CB[n], CB[n] derivatives and analogues, and most recently nor-seco-CB[n] (Lagona et al., 2005). The high affinity and high selectivity of CB[n]-type receptors toward their guests (Liu et al., 2005), most notably organic ammonium ions, has lead to their use in a variety of applications including molecular machines (Ko et al. 2007), drug delivery (Wheate et al. 2006), chemical sensors (Henning et al. 2007), self-assembled macromolecules (Moon & Kaifer, 2004; Rauwald & Scherman 2008), and recognition of biomolecules (Bush et al., 2005; Rekharsky et al. 2008).

The polycyclic nature of CB[n] molecular containers suggests that this class of molecules might be relatively rigid and have difficulty responding to the size and shape of its guests. There is evidence, however, that CB[n] molecular containers may undergo substantial deformations both in transition states for ingression and egression of guests and in the ground state of the corresponding host–guest complexes (Huang et al., 2007; Marquez et al., 2004; Samsonenko et al., 2002). This paper reports the X-ray crystal structure of complex (I) which exhibits such a deformation.

The asymmetric unit of complex (I) comprises one half of a CB[6] molecule and one half of a p-xylylenediammonium cation both disposed about a center of inversion, an iodide counterion and five water molecules. The majority of the structural features of complex (I) are as expected based on its molecular structure, but several deserve some comment. For example, the p-xylylenediammonium ions are held in the cavity of CB[6] by H-bonds to its ureidyl CO portals (Fig. 1 and Table 1). The solvating H2O molecules form a cap on the complex by H-bonding to CB[6], the diammonium ion, themselves, and finally terminated by H-bonding to the I- counterion (Fig. 2). Complex (I) packs in the crystal by formation of a square array in the bc plane (Fig. 3).

Most interesting is the substantial ellipsoidal deformation observed in complex (I). We quantify this distortion for complex (I) as 0.88 Å (non-bonded C—C range 9.852–10.730 Å) by determining the distances between opposing C-atoms along the equator of the molecule as suggested previously by Samsonenko (Samsonenko et al., 2002). Although this ellipsoidal deformation is modest relative to those previously reported for complexes of CB[6] and other CB[n]-type receptors, taken together the results highlight the ability of CB[n]-type receptors to respond to the size and shape of their guests.

Related literature top

For related literature, see: Bush et al. (2005); Freeman et al. (1981); Freeman (1984); Henning et al. (2007); Huang et al. (2007); Ko et al. (2007); Lagona et al. (2005); Liu et al. (2005); Marquez et al. (2004); Moon & Kaifer (2004); Rauwald & Scherman (2008); Rekharsky et al. (2008); Samsonenko et al. (2002); Wheate et al. (2006).

Experimental top

Complex (I) was prepared by mixing cucurbit[6]uril with 1,4-xylylenediamine dihydrochloride in water according to the literature procedure (Freeman et al., 1981; Freeman, 1984; Liu et al., 2005) followed by the addition of KI. Single crystals suitable for structure determination were obtained by allowing the aqueous solution of complex (I) to stand at room temperature for several days.

Refinement top

The N- and C-bound H atoms were included in the riding-model approximation with N—H = 0.90 Å and C—H = 0.98 to 0.99 Å, and with Uiso(H) = 1.5Ueq(N) and Uiso(H) = 1.2Ueq(C). The water H atoms were refined with soft restraints [O—H = 0.84 (3) Å, H—O—H = 105 (2)° in a riding model approximation, with Uiso(H) = 1.5Ueq(O). The benzene ring of the cation is rotationally disordered between two orientations in a ratio of 3:1. The highest residual peak (1.68 e Å-3) is located 0.95 Å from I1 atom and is due to either partial disorder of I1 atom or truncation effect. The crystal studied is non-merohedral twin consisting of two components (domains). The twinning law is 180° rotation around 100 reciprocal direction with approximate 7:1 domain ratio.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of complex (I) showing atom-labeling scheme and displacement ellipsoids at the 30% probability level. The unlabelled atoms are related with the labelled ones by symmetry operation (1-x, 1-y, 1-z). The iodide counterions and solvating water molecules are omitted for clarity.
[Figure 2] Fig. 2. Cross-eyed stereoview of the structure of complex (I) in the crystal showing the chain of H2O molecules H-bonded to the ureidyl CO portal of CB[6] and terminated by H-bonding to iodide.
[Figure 3] Fig. 3. Illustration of the packing of complex (I) in the bc-plane of the crystal. Color coding: C, gray; H, white; N, blue; O, red; I, purple; H-bonds, red-yellow striped.
Cucurbit[6]uril p-xylylenediammonium diiodide decahydrate top
Crystal data top
C36H36N24O12·C8H14N22+·2I·10H2OF(000) = 1596
Mr = 1569.06Dx = 1.811 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6752 reflections
a = 11.9987 (9) Åθ = 2.1–25.0°
b = 15.9520 (12) ŵ = 1.20 mm1
c = 15.0517 (11) ÅT = 220 K
β = 92.852 (1)°Prism, colourless
V = 2877.4 (4) Å30.21 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART1000 three-circle
diffractometer
6606 independent reflections
Radiation source: fine-focus sealed tube5363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 018
Tmin = 0.798, Tmax = 0.914l = 017
19804 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.01P)2 + 9.45P], P = (max(Fo2,0) + 2Fc2)/3
6606 reflections(Δ/σ)max = 0.001
475 parametersΔρmax = 1.68 e Å3
33 restraintsΔρmin = 0.84 e Å3
Crystal data top
C36H36N24O12·C8H14N22+·2I·10H2OV = 2877.4 (4) Å3
Mr = 1569.06Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.9987 (9) ŵ = 1.20 mm1
b = 15.9520 (12) ÅT = 220 K
c = 15.0517 (11) Å0.21 × 0.10 × 0.08 mm
β = 92.852 (1)°
Data collection top
Bruker SMART1000 three-circle
diffractometer
6606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5363 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.914Rint = 0.027
19804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04333 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.68 e Å3
6606 reflectionsΔρmin = 0.84 e Å3
475 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The crystal is non-merohedral twin in about 7:1 ratio with 180° rotation around 100 reciprocal axis.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7930 (3)0.5633 (2)0.5760 (2)0.0507 (10)
H1A0.76030.59530.61660.076*
H1B0.86180.58320.56730.076*
H1C0.79790.51010.59580.076*
C10.7258 (3)0.5656 (3)0.4919 (3)0.0443 (10)
H1D0.76410.53310.44730.053*
H1E0.72100.62370.47100.053*
C20.6097 (3)0.5316 (2)0.4984 (3)0.0338 (8)0.75 (2)
C30.5731 (6)0.4915 (8)0.5724 (4)0.042 (2)0.75 (2)
H30.62130.48620.62320.050*0.75 (2)
C40.4658 (7)0.4587 (8)0.5731 (4)0.042 (2)0.75 (2)
H40.44400.42930.62350.051*0.75 (2)
C2A0.6097 (3)0.5316 (2)0.4984 (3)0.0338 (8)0.25 (2)
C3A0.5490 (14)0.538 (3)0.5730 (11)0.048 (7)0.25 (2)
H3A0.58170.56230.62480.058*0.25 (2)
C4A0.4395 (15)0.509 (3)0.5729 (14)0.055 (8)0.25 (2)
H4A0.39830.51750.62360.065*0.25 (2)
N100.3002 (3)0.7278 (2)0.4134 (2)0.0404 (8)
C110.3824 (3)0.7816 (3)0.3748 (3)0.0419 (10)
H110.35610.84020.36940.050*
N120.4926 (3)0.7764 (2)0.4189 (3)0.0514 (10)
C130.2665 (3)0.6641 (3)0.3575 (3)0.0378 (9)
O130.1943 (2)0.61228 (18)0.3720 (2)0.0477 (7)
C140.5705 (4)0.7472 (3)0.3620 (3)0.0492 (11)
O140.6714 (2)0.7448 (2)0.3790 (2)0.0597 (9)
N150.3242 (3)0.6691 (2)0.2818 (2)0.0410 (8)
C160.3977 (3)0.7412 (3)0.2827 (3)0.0417 (10)
H160.37760.78040.23350.050*
N170.5157 (3)0.7200 (2)0.2855 (2)0.0443 (9)
C180.3017 (3)0.6167 (3)0.2047 (3)0.0424 (10)
H18A0.30350.65150.15100.051*
H18B0.22640.59340.20720.051*
C190.5726 (4)0.6914 (3)0.2075 (3)0.0525 (12)
H19A0.65040.71010.21340.063*
H19B0.53810.71890.15490.063*
N200.3804 (2)0.5487 (2)0.1978 (2)0.0369 (8)
C210.4813 (3)0.5542 (2)0.1478 (3)0.0382 (9)
H210.46510.57400.08620.046*
N220.5717 (3)0.6010 (2)0.1919 (2)0.0421 (8)
C230.3496 (3)0.4674 (3)0.2112 (3)0.0393 (10)
O230.2621 (2)0.44348 (18)0.2413 (2)0.0458 (7)
C240.6548 (3)0.5501 (3)0.2251 (3)0.0414 (10)
O240.7409 (2)0.57396 (19)0.2638 (2)0.0554 (8)
N250.4334 (3)0.4166 (2)0.1863 (2)0.0410 (8)
C260.5247 (3)0.4628 (3)0.1501 (3)0.0395 (10)
H260.54250.44240.09030.047*
N270.6246 (3)0.4686 (2)0.2104 (2)0.0414 (8)
C280.4310 (3)0.3270 (3)0.1997 (3)0.0471 (11)
H28A0.46550.29990.14940.056*
H28B0.35300.30880.19880.056*
C290.7032 (3)0.3999 (3)0.2238 (3)0.0474 (11)
H29A0.70300.36630.16930.057*
H29B0.77830.42320.23410.057*
N300.4870 (3)0.2973 (2)0.2816 (2)0.0429 (9)
C310.6038 (3)0.2749 (3)0.2874 (3)0.0438 (10)
H310.62360.23810.23760.053*
N320.6791 (3)0.3455 (2)0.2977 (2)0.0453 (9)
C330.4323 (3)0.2741 (3)0.3553 (3)0.0439 (10)
O330.3330 (2)0.28222 (19)0.3662 (2)0.0543 (8)
C340.7397 (3)0.3437 (3)0.3768 (3)0.0417 (10)
O340.8151 (2)0.39229 (19)0.4000 (2)0.0512 (8)
N350.5085 (3)0.2381 (2)0.4152 (3)0.0455 (9)
C360.6176 (3)0.2293 (3)0.3780 (3)0.0435 (10)
H360.63830.16980.37080.052*
N370.7055 (3)0.2765 (2)0.4248 (2)0.0437 (9)
C380.4791 (4)0.1889 (3)0.4935 (4)0.0598 (13)
H38A0.39840.17910.48920.072*
H38B0.51540.13400.48990.072*
C390.7588 (3)0.2502 (3)0.5088 (3)0.0442 (10)
H39A0.76800.18910.50760.053*
H39B0.83350.27510.51420.053*
I10.78087 (2)0.50257 (2)0.010322 (19)0.05174 (9)
O1W0.9837 (3)0.6263 (3)0.4947 (3)0.0760 (11)
H11W1.035 (3)0.593 (3)0.512 (3)0.114*
H12W0.978 (5)0.619 (4)0.4385 (14)0.114*
O2W0.9547 (3)0.6070 (3)0.3199 (3)0.0937 (14)
H21W0.994 (4)0.571 (3)0.291 (4)0.141*
H22W0.891 (3)0.584 (4)0.310 (5)0.141*
O3W1.0139 (4)0.3995 (3)0.3046 (3)0.0880 (12)
H31W1.019 (6)0.427 (3)0.255 (2)0.132*
H32W0.969 (4)0.433 (3)0.334 (4)0.132*
O4W0.8962 (3)0.7906 (3)0.4916 (3)0.0839 (11)
H41W0.8269 (16)0.790 (4)0.486 (5)0.126*
H42W0.914 (5)0.746 (3)0.467 (4)0.126*
O5W1.0206 (3)0.5122 (4)0.1607 (3)0.0947 (14)
H51W1.073 (3)0.507 (5)0.129 (4)0.142*
H52W0.965 (3)0.495 (5)0.133 (4)0.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0256 (18)0.070 (3)0.056 (2)0.0157 (17)0.0027 (16)0.012 (2)
C10.031 (2)0.054 (2)0.048 (3)0.0075 (19)0.0007 (18)0.005 (2)
C20.0290 (19)0.038 (2)0.034 (2)0.0021 (15)0.0010 (16)0.0013 (17)
C30.032 (3)0.056 (6)0.037 (3)0.004 (3)0.008 (2)0.006 (3)
C40.036 (4)0.054 (6)0.037 (4)0.007 (4)0.005 (3)0.010 (3)
C2A0.0290 (19)0.038 (2)0.034 (2)0.0021 (15)0.0010 (16)0.0013 (17)
C3A0.041 (9)0.06 (2)0.043 (11)0.002 (11)0.005 (7)0.008 (11)
C4A0.042 (9)0.07 (2)0.048 (12)0.008 (11)0.021 (8)0.007 (13)
N100.0284 (18)0.048 (2)0.045 (2)0.0041 (15)0.0042 (15)0.0011 (17)
C110.029 (2)0.042 (2)0.054 (3)0.0006 (18)0.0004 (18)0.000 (2)
N120.0265 (19)0.064 (3)0.063 (3)0.0022 (17)0.0015 (17)0.022 (2)
C130.024 (2)0.043 (2)0.045 (3)0.0019 (18)0.0013 (17)0.002 (2)
O130.0295 (15)0.0550 (19)0.059 (2)0.0099 (14)0.0055 (13)0.0007 (15)
C140.031 (2)0.046 (3)0.072 (3)0.005 (2)0.009 (2)0.004 (2)
O140.0255 (17)0.066 (2)0.088 (3)0.0058 (14)0.0051 (15)0.0152 (18)
N150.0326 (19)0.046 (2)0.045 (2)0.0062 (15)0.0072 (15)0.0025 (17)
C160.029 (2)0.043 (2)0.052 (3)0.0002 (18)0.0034 (18)0.004 (2)
N170.0298 (19)0.054 (2)0.049 (2)0.0009 (16)0.0088 (16)0.0014 (18)
C180.030 (2)0.049 (3)0.048 (3)0.0032 (18)0.0029 (18)0.001 (2)
C190.037 (2)0.059 (3)0.062 (3)0.010 (2)0.010 (2)0.005 (2)
N200.0228 (17)0.041 (2)0.046 (2)0.0025 (14)0.0010 (14)0.0019 (16)
C210.033 (2)0.045 (2)0.037 (2)0.0002 (18)0.0022 (18)0.0046 (19)
N220.0252 (18)0.044 (2)0.057 (2)0.0023 (15)0.0012 (15)0.0032 (17)
C230.026 (2)0.049 (2)0.042 (2)0.0013 (18)0.0089 (18)0.0041 (19)
O230.0231 (15)0.0559 (18)0.0581 (19)0.0046 (13)0.0003 (13)0.0063 (15)
C240.029 (2)0.052 (3)0.044 (3)0.0023 (19)0.0068 (19)0.006 (2)
O240.0262 (16)0.066 (2)0.073 (2)0.0050 (14)0.0053 (14)0.0117 (17)
N250.0227 (17)0.040 (2)0.059 (2)0.0004 (14)0.0019 (15)0.0022 (17)
C260.030 (2)0.049 (2)0.040 (2)0.0006 (18)0.0002 (18)0.0031 (19)
N270.0227 (17)0.051 (2)0.051 (2)0.0043 (15)0.0018 (15)0.0001 (17)
C280.029 (2)0.054 (3)0.057 (3)0.0015 (19)0.0060 (19)0.004 (2)
C290.033 (2)0.058 (3)0.050 (3)0.002 (2)0.0011 (19)0.004 (2)
N300.0276 (18)0.046 (2)0.054 (2)0.0014 (15)0.0057 (16)0.0062 (18)
C310.031 (2)0.050 (3)0.050 (3)0.0072 (19)0.0032 (18)0.002 (2)
N320.0306 (19)0.054 (2)0.050 (2)0.0072 (16)0.0067 (16)0.0113 (18)
C330.028 (2)0.037 (2)0.066 (3)0.0050 (18)0.003 (2)0.007 (2)
O330.0269 (17)0.0540 (19)0.082 (2)0.0067 (14)0.0009 (15)0.0034 (17)
C340.029 (2)0.048 (3)0.048 (3)0.0038 (19)0.0001 (19)0.006 (2)
O340.0310 (16)0.061 (2)0.061 (2)0.0100 (14)0.0080 (14)0.0086 (16)
N350.0333 (19)0.051 (2)0.053 (2)0.0046 (16)0.0019 (17)0.0059 (18)
C360.033 (2)0.047 (3)0.051 (3)0.0008 (19)0.0011 (19)0.000 (2)
N370.0318 (18)0.053 (2)0.045 (2)0.0039 (16)0.0063 (15)0.0077 (17)
C380.039 (3)0.056 (3)0.084 (4)0.005 (2)0.002 (3)0.003 (3)
C390.033 (2)0.051 (3)0.048 (3)0.0045 (18)0.0021 (19)0.004 (2)
I10.05282 (17)0.05554 (18)0.04705 (16)0.01189 (15)0.00454 (12)0.00013 (16)
O1W0.0357 (19)0.103 (3)0.089 (3)0.0053 (18)0.0004 (19)0.021 (3)
O2W0.041 (2)0.119 (4)0.119 (4)0.004 (2)0.005 (2)0.004 (3)
O3W0.074 (3)0.091 (3)0.099 (3)0.006 (2)0.010 (2)0.002 (2)
O4W0.071 (2)0.082 (3)0.100 (3)0.002 (2)0.005 (2)0.008 (2)
O5W0.050 (2)0.168 (4)0.066 (2)0.003 (3)0.0075 (18)0.000 (3)
Geometric parameters (Å, º) top
N1—C11.467 (5)C23—N251.359 (5)
N1—H1A0.9000C24—O241.222 (5)
N1—H1B0.9000C24—N271.364 (5)
N1—H1C0.9000N25—C281.445 (5)
C1—C21.503 (5)N25—C261.449 (5)
C1—H1D0.9800C26—N271.470 (5)
C1—H1E0.9800C26—H260.9900
C2—C31.375 (6)N27—C291.453 (5)
C2—C4i1.380 (8)C28—N301.453 (5)
C3—C41.391 (7)C28—H28A0.9800
C3—H30.9400C28—H28B0.9800
C4—C2i1.380 (8)C29—N321.452 (5)
C4—H40.9400C29—H29A0.9800
C3A—C4A1.393 (11)C29—H29B0.9800
C3A—H3A0.9400N30—C331.368 (5)
C4A—C2Ai1.36 (2)N30—C311.444 (5)
C4A—H4A0.9400C31—N321.447 (5)
N10—C131.368 (5)C31—C361.547 (6)
N10—C39i1.441 (5)C31—H310.9900
N10—C111.451 (5)N32—C341.364 (5)
C11—N121.452 (5)C33—O331.218 (5)
C11—C161.549 (6)C33—N351.377 (5)
C11—H110.9900C34—O341.228 (5)
N12—C141.379 (5)C34—N371.367 (5)
N12—C38i1.455 (6)N35—C361.455 (5)
C13—O131.225 (4)N35—C381.474 (6)
C13—N151.365 (5)C36—N371.449 (5)
C14—O141.225 (5)C36—H360.9900
C14—N171.367 (6)N37—C391.450 (5)
N15—C181.445 (5)C38—N12i1.455 (6)
N15—C161.449 (5)C38—H38A0.9800
C16—N171.453 (5)C38—H38B0.9800
C16—H160.9900C39—N10i1.441 (5)
N17—C191.460 (5)C39—H39A0.9800
C18—N201.446 (5)C39—H39B0.9800
C18—H18A0.9800I1—H52W2.80 (4)
C18—H18B0.9800O1W—H11W0.843 (19)
C19—N221.461 (5)O1W—H12W0.852 (19)
C19—H19A0.9800O2W—H21W0.870 (18)
C19—H19B0.9800O2W—H22W0.85 (2)
N20—C231.366 (5)O3W—H31W0.870 (18)
N20—C211.460 (5)O3W—H32W0.892 (19)
C21—N221.450 (5)O4W—H41W0.831 (19)
C21—C261.547 (5)O4W—H42W0.835 (19)
C21—H210.9900O5W—H51W0.82 (2)
N22—C241.361 (5)O5W—H52W0.824 (19)
C23—O231.225 (5)
C1—N1—H1A109.5C24—O24—H22W164.0 (18)
C1—N1—H1B109.5C23—N25—C28122.1 (3)
H1A—N1—H1B109.5C23—N25—C26112.6 (3)
C1—N1—H1C109.5C28—N25—C26125.2 (3)
H1A—N1—H1C109.5N25—C26—N27114.1 (3)
H1B—N1—H1C109.5N25—C26—C21103.2 (3)
N1—C1—C2113.9 (3)N27—C26—C21102.6 (3)
N1—C1—H1D108.8N25—C26—H26112.1
C2—C1—H1D108.8N27—C26—H26112.1
N1—C1—H1E108.8C21—C26—H26112.1
C2—C1—H1E108.8C24—N27—C29122.1 (3)
H1D—C1—H1E107.7C24—N27—C26111.1 (3)
C3—C2—C4i117.4 (4)C29—N27—C26122.8 (3)
C3—C2—C1123.7 (4)N25—C28—N30115.4 (3)
C4i—C2—C1118.9 (4)N25—C28—H28A108.4
C2—C3—C4121.0 (5)N30—C28—H28A108.4
C2—C3—H3119.5N25—C28—H28B108.4
C4—C3—H3119.5N30—C28—H28B108.4
C2i—C4—C3121.6 (5)H28A—C28—H28B107.5
C2i—C4—H4119.2N32—C29—N27113.8 (3)
C3—C4—H4119.2N32—C29—H29A108.8
C4A—C3A—H3A119.6N27—C29—H29A108.8
C2Ai—C4A—C3A122.1 (13)N32—C29—H29B108.8
C2Ai—C4A—H4A119.0N27—C29—H29B108.8
C3A—C4A—H4A119.0H29A—C29—H29B107.7
C13—N10—C39i122.7 (3)C33—N30—C31112.8 (3)
C13—N10—C11112.2 (3)C33—N30—C28123.8 (3)
C39i—N10—C11123.5 (3)C31—N30—C28122.6 (4)
N10—C11—N12113.9 (3)N30—C31—N32114.3 (3)
N10—C11—C16103.1 (3)N30—C31—C36103.3 (3)
N12—C11—C16103.8 (3)N32—C31—C36103.4 (3)
N10—C11—H11111.8N30—C31—H31111.7
N12—C11—H11111.8N32—C31—H31111.7
C16—C11—H11111.8C36—C31—H31111.7
C14—N12—C11111.5 (4)C34—N32—C31112.4 (3)
C14—N12—C38i123.8 (4)C34—N32—C29124.3 (4)
C11—N12—C38i123.9 (3)C31—N32—C29122.0 (3)
O13—C13—N15125.5 (4)O33—C33—N30126.4 (4)
O13—C13—N10125.5 (4)O33—C33—N35125.3 (4)
N15—C13—N10108.9 (3)N30—C33—N35108.3 (3)
O14—C14—N17126.5 (4)O34—C34—N32126.0 (4)
O14—C14—N12125.0 (4)O34—C34—N37125.5 (4)
N17—C14—N12108.5 (4)N32—C34—N37108.4 (4)
C14—O14—H41W145.2 (12)C34—O34—H32W132.1 (14)
C13—N15—C18123.7 (3)C33—N35—C36111.6 (4)
C13—N15—C16111.9 (3)C33—N35—C38124.6 (4)
C18—N15—C16123.7 (3)C36—N35—C38120.8 (3)
N15—C16—N17114.0 (3)N37—C36—N35114.2 (4)
N15—C16—C11103.8 (3)N37—C36—C31103.2 (3)
N17—C16—C11103.2 (3)N35—C36—C31103.6 (3)
N15—C16—H16111.7N37—C36—H36111.8
N17—C16—H16111.7N35—C36—H36111.8
C11—C16—H16111.7C31—C36—H36111.8
C14—N17—C16112.2 (3)C34—N37—C36112.4 (3)
C14—N17—C19123.4 (4)C34—N37—C39123.8 (3)
C16—N17—C19122.8 (4)C36—N37—C39123.5 (3)
N15—C18—N20113.2 (3)N12i—C38—N35117.8 (4)
N15—C18—H18A108.9N12i—C38—H38A107.8
N20—C18—H18A108.9N35—C38—H38A107.8
N15—C18—H18B108.9N12i—C38—H38B107.8
N20—C18—H18B108.9N35—C38—H38B107.8
H18A—C18—H18B107.7H38A—C38—H38B107.2
N17—C19—N22116.0 (4)N10i—C39—N37115.1 (3)
N17—C19—H19A108.3N10i—C39—H39A108.5
N22—C19—H19A108.3N37—C39—H39A108.5
N17—C19—H19B108.3N10i—C39—H39B108.5
N22—C19—H19B108.3N37—C39—H39B108.5
H19A—C19—H19B107.4H39A—C39—H39B107.5
C23—N20—C18121.3 (3)H1B—O1W—H42W97.1
C23—N20—C21111.8 (3)H1B—O1W—H11W99.4
C18—N20—C21123.6 (3)H42W—O1W—H11W154 (4)
N22—C21—N20114.5 (3)H1B—O1W—H12W118.7
N22—C21—C26103.4 (3)H42W—O1W—H12W85 (4)
N20—C21—C26102.6 (3)H11W—O1W—H12W104 (3)
N22—C21—H21111.9H12W—O2W—H21W120 (4)
N20—C21—H21111.9H12W—O2W—H22W109 (5)
C26—C21—H21111.9H21W—O2W—H22W97 (3)
C24—N22—C21112.2 (3)H31W—O3W—H32W101 (3)
C24—N22—C19122.1 (4)H41W—O4W—H42W103 (4)
C21—N22—C19125.5 (3)H31W—O5W—H21W69.1 (15)
O23—C23—N25125.2 (4)H31W—O5W—H51W113 (6)
O23—C23—N20126.4 (4)H21W—O5W—H51W136 (5)
N25—C23—N20108.4 (3)H31W—O5W—H52W96 (6)
O24—C24—N22125.1 (4)H21W—O5W—H52W116 (5)
O24—C24—N27125.8 (4)H51W—O5W—H52W107 (4)
N22—C24—N27109.0 (3)
N1—C1—C2—C38.4 (9)O23—C23—N25—C26177.8 (4)
N1—C1—C2—C4i171.1 (7)N20—C23—N25—C262.8 (5)
C4i—C2—C3—C42.9 (10)C23—N25—C26—N27105.7 (4)
C1—C2—C3—C4177.6 (5)C28—N25—C26—N2771.4 (5)
C2—C3—C4—C2i3.0 (10)C23—N25—C26—C214.8 (4)
C13—N10—C11—N12112.2 (4)C28—N25—C26—C21178.1 (4)
C39i—N10—C11—N1281.8 (5)N22—C21—C26—N25129.2 (3)
C13—N10—C11—C160.4 (4)N20—C21—C26—N259.8 (4)
C39i—N10—C11—C16166.4 (3)N22—C21—C26—N2710.4 (4)
N10—C11—N12—C14117.8 (4)N20—C21—C26—N27108.9 (3)
C16—C11—N12—C146.4 (5)O24—C24—N27—C2913.1 (7)
N10—C11—N12—C38i72.2 (5)N22—C24—N27—C29168.9 (3)
C16—C11—N12—C38i176.4 (4)O24—C24—N27—C26171.2 (4)
C39i—N10—C13—O1310.4 (6)N22—C24—N27—C2610.7 (5)
C11—N10—C13—O13176.5 (4)N25—C26—N27—C24124.0 (4)
C39i—N10—C13—N15168.0 (3)C21—C26—N27—C2413.2 (4)
C11—N10—C13—N151.9 (4)N25—C26—N27—C2978.1 (5)
C11—N12—C14—O14172.2 (4)C21—C26—N27—C29171.1 (3)
C38i—N12—C14—O142.2 (7)C23—N25—C28—N3093.7 (5)
C11—N12—C14—N179.3 (5)C26—N25—C28—N3083.1 (5)
C38i—N12—C14—N17179.3 (4)C24—N27—C29—N32112.2 (4)
O13—C13—N15—C184.8 (6)C26—N27—C29—N3292.2 (5)
N10—C13—N15—C18173.5 (3)N25—C28—N30—C33102.0 (5)
O13—C13—N15—C16175.6 (4)N25—C28—N30—C3189.8 (5)
N10—C13—N15—C162.7 (5)C33—N30—C31—N32109.9 (4)
C13—N15—C16—N17114.0 (4)C28—N30—C31—N3280.7 (5)
C18—N15—C16—N1775.2 (5)C33—N30—C31—C361.7 (5)
C13—N15—C16—C112.4 (4)C28—N30—C31—C36167.6 (4)
C18—N15—C16—C11173.2 (3)N30—C31—N32—C34116.4 (4)
N10—C11—C16—N151.1 (4)C36—C31—N32—C344.8 (5)
N12—C11—C16—N15117.9 (3)N30—C31—N32—C2976.3 (5)
N10—C11—C16—N17120.4 (3)C36—C31—N32—C29172.1 (3)
N12—C11—C16—N171.3 (4)N27—C29—N32—C34107.2 (5)
O14—C14—N17—C16173.1 (4)N27—C29—N32—C3187.1 (5)
N12—C14—N17—C168.4 (5)C31—N30—C33—O33176.7 (4)
O14—C14—N17—C196.7 (7)C28—N30—C33—O337.5 (7)
N12—C14—N17—C19174.8 (4)C31—N30—C33—N352.1 (5)
N15—C16—N17—C14116.1 (4)C28—N30—C33—N35171.3 (4)
C11—C16—N17—C144.2 (5)C31—N32—C34—O34174.4 (4)
N15—C16—N17—C1977.4 (5)C29—N32—C34—O347.5 (7)
C11—C16—N17—C19170.7 (4)C31—N32—C34—N373.2 (5)
C13—N15—C18—N20101.9 (4)C29—N32—C34—N37170.2 (4)
C16—N15—C18—N2088.4 (5)O33—C33—N35—C36173.4 (4)
C14—N17—C19—N22106.0 (5)N30—C33—N35—C365.4 (5)
C16—N17—C19—N2289.0 (5)O33—C33—N35—C3812.9 (7)
N15—C18—N20—C23109.8 (4)N30—C33—N35—C38166.0 (4)
N15—C18—N20—C2192.6 (4)C33—N35—C36—N37117.7 (4)
C23—N20—C21—N22123.7 (4)C38—N35—C36—N3780.9 (5)
C18—N20—C21—N2276.8 (5)C33—N35—C36—C316.2 (4)
C23—N20—C21—C2612.4 (4)C38—N35—C36—C31167.6 (4)
C18—N20—C21—C26171.9 (3)N30—C31—C36—N37123.9 (3)
N20—C21—N22—C24105.8 (4)N32—C31—C36—N374.5 (4)
C26—C21—N22—C245.0 (4)N30—C31—C36—N354.6 (4)
N20—C21—N22—C1969.0 (5)N32—C31—C36—N35114.9 (3)
C26—C21—N22—C19179.8 (4)O34—C34—N37—C36177.7 (4)
N17—C19—N22—C2491.7 (5)N32—C34—N37—C360.1 (5)
N17—C19—N22—C2182.6 (5)O34—C34—N37—C393.8 (7)
C18—N20—C23—O2310.6 (7)N32—C34—N37—C39173.8 (4)
C21—N20—C23—O23170.6 (4)N35—C36—N37—C34108.8 (4)
C18—N20—C23—N25170.0 (3)C31—C36—N37—C343.0 (4)
C21—N20—C23—N2510.0 (5)N35—C36—N37—C3977.3 (5)
C21—N22—C24—O24178.8 (4)C31—C36—N37—C39171.0 (4)
C19—N22—C24—O246.3 (7)C33—N35—C38—N12i113.2 (5)
C21—N22—C24—N273.2 (5)C36—N35—C38—N12i87.9 (5)
C19—N22—C24—N27171.8 (4)C34—N37—C39—N10i103.4 (4)
O23—C23—N25—C285.0 (6)C36—N37—C39—N10i83.3 (5)
N20—C23—N25—C28174.4 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O23i0.902.252.861 (5)124
N1—H1A···O33i0.902.273.040 (5)143
N1—H1B···O1W0.901.992.833 (5)155
N1—H1B···O3Wii0.902.392.922 (6)118
N1—H1C···O13i0.902.012.910 (5)175
O1W—H11W···O34ii0.84 (2)2.19 (3)2.837 (4)133 (4)
O1W—H12W···O2W0.85 (2)1.80 (2)2.655 (6)175 (6)
O2W—H21W···O5W0.87 (2)2.21 (3)2.973 (6)146 (5)
O2W—H22W···O240.85 (2)1.91 (3)2.712 (5)157 (7)
O3W—H31W···O5W0.87 (2)1.97 (2)2.820 (7)167 (4)
O3W—H32W···O340.89 (2)2.23 (4)2.847 (5)126 (4)
O4W—H41W···O140.83 (2)2.51 (5)3.198 (5)141 (6)
O4W—H42W···O1W0.84 (2)2.11 (5)2.823 (6)143 (7)
O5W—H51W···I1iii0.82 (2)2.80 (3)3.601 (4)167 (6)
O5W—H52W···I10.82 (2)2.80 (4)3.573 (4)157 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC36H36N24O12·C8H14N22+·2I·10H2O
Mr1569.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)220
a, b, c (Å)11.9987 (9), 15.9520 (12), 15.0517 (11)
β (°) 92.852 (1)
V3)2877.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.21 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART1000 three-circle
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
19804, 6606, 5363
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.083, 1.00
No. of reflections6606
No. of parameters475
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.68, 0.84

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O23i0.902.252.861 (5)124.4
N1—H1A···O33i0.902.273.040 (5)142.8
N1—H1B···O1W0.901.992.833 (5)154.9
N1—H1B···O3Wii0.902.392.922 (6)117.5
N1—H1C···O13i0.902.012.910 (5)174.5
O1W—H11W···O34ii0.843 (19)2.19 (3)2.837 (4)133 (4)
O1W—H12W···O2W0.852 (19)1.80 (2)2.655 (6)175 (6)
O2W—H21W···O5W0.870 (18)2.21 (3)2.973 (6)146 (5)
O2W—H22W···O240.85 (2)1.91 (3)2.712 (5)157 (7)
O3W—H31W···O5W0.870 (18)1.97 (2)2.820 (7)167 (4)
O3W—H32W···O340.892 (19)2.23 (4)2.847 (5)126 (4)
O4W—H41W···O140.831 (19)2.51 (5)3.198 (5)141 (6)
O4W—H42W···O1W0.835 (19)2.11 (5)2.823 (6)143 (7)
O5W—H51W···I1iii0.82 (2)2.80 (3)3.601 (4)167 (6)
O5W—H52W···I10.824 (19)2.80 (4)3.573 (4)157 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z.
 

Acknowledgements

The authors thank the US National Science Foundation (grant No. CHE-0615049) for financial support.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBush, M. E., Bouley, N. D. & Urbach, A. R. (2005). J. Am. Chem. Soc. 127, 14511–14517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFreeman, W. A. (1984). Acta Cryst. B40, 382–387.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7368.  CSD CrossRef CAS Web of Science Google Scholar
First citationHenning, A., Bakirci, H. & Nau, W. M. (2007). Nat. Methods, 4, 629–632.  Web of Science PubMed Google Scholar
First citationHuang, W.-H., Zavalij, P. Y. & Isaacs, L. (2007). Acta Cryst. E63, o1060–o1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKo, Y. H., Kim, E., Hwang, I. & Kim, K. (2007). Chem. Commun. pp. 1305–1315.  Web of Science CrossRef Google Scholar
First citationLagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. (2005). Angew. Chem. Int. Ed. 44, 4844–4870.  Web of Science CrossRef CAS Google Scholar
First citationLiu, S., Ruspic, C., Mukhopadhyay, P., Chakrabarti, S., Zavalij, P. Y. & Isaacs, L. (2005). J. Am. Chem. Soc. 127, 15959–15967.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarquez, C., Hudgins, R. R. & Nau, W. M. (2004). J. Am. Chem. Soc. 126, 5808–5816.  CrossRef Google Scholar
First citationMoon, K. & Kaifer, A. E. (2004). Org. Lett. 6, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRauwald, U. & Scherman, O. (2008). Angew. Chem. Int. Ed. 47, 3950–3953.  Web of Science CrossRef CAS Google Scholar
First citationRekharsky, M. V., Yamamura, H., Ko, Y. H., Selvapalam, N., Kim, K. & Inoue, Y. (2008). Chem. Commun. pp. 2236–2238.  Web of Science CrossRef Google Scholar
First citationSamsonenko, D. G., Virovets, A. V., Lipkowski, J., Geras'ko, O. A. & Fedin, V. P. (2002). J. Struct. Chem. 43, 664–668.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWheate, N. J., Buck, D. P., Day, A. I. & Collins, J. G. (2006). Dalton Trans. pp. 451–458.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1321-o1322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds