organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-1-(1H-Benzimidazol-2-yl)ethanol

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 18 April 2008; accepted 9 May 2008; online 7 June 2008)

The asymmetric unit of the title mol­ecule, C9H10N2O, contains two mol­ecules. The fused benzene and imidazole rings are nearly coplanar, the largest deviations from the mean plane being 0.025 (3) Å at the non-bridgehead imidazole C atom of one mol­ecule and 0.018 (3) Å at one of the bridgehead C atoms in the other mol­ecule. Intermolecular O—H⋯N and N—H⋯O hydrogen bonds result in the formation of a sheet parallel to the (010) plane.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Chen & Ruan (2007[Chen, J. & Ruan, Y. (2007). Acta Cryst. E63, m2964.]); Garuti et al. (1999[Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525-2530.]); Matsuno et al. (2000[Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778-1781.]); Tlahuext et al. (2007[Tlahuext, H., Tlahuextl, M., López-Gómez, S. & Tapia-Benavides, A. R. (2007). Acta Cryst. E63, m1263-m1265.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O

  • Mr = 162.19

  • Orthorhombic, P 21 21 2

  • a = 13.734 (3) Å

  • b = 15.376 (3) Å

  • c = 7.9163 (16) Å

  • V = 1671.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.912, Tmax = 1.00 (expected range = 0.908–0.996)

  • 17487 measured reflections

  • 2199 independent reflections

  • 1380 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.123

  • S = 1.07

  • 2199 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.82 1.91 2.713 (4) 165
N4—H4⋯O1i 0.86 1.97 2.828 (4) 178
O2—H2⋯N2ii 0.82 1.93 2.743 (4) 170
N1—H1A⋯O2iii 0.86 1.93 2.751 (4) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazole and benzimidazole derivatives are important heteroaromatic compounds and have attracted considerable attention because of good biological and pharmaceutical activities (Matsuno et al., 2000; Garuti et al., 1999). These compounds also play an important role in the development of coordination chemistry. Many derivatives of benzimidazole have been prepared and their complexes have been studied (Tlahuext et al., 2007; Chen & Ruan, 2007). In this paper, we report the crystal structure of the title compound.

There are two crystallographically independent molecules, A and B, linked by a O-H···N hydrogen bond in the asymmetric unit . The bond lengths and angles in A and B are within normal ranges (Allen et al., 1987). The two fused benzene and imidazole rings are nearly planar with the largest deviations from the mean plane being 0.025 (3) Å at C7 and 0.018 (3) Å at C10 . These two fused rings make a dihedral angle of 35.01 (9)°.

The molecules are further connected through O-H···N and N-H···O hydrogen bond buiding up a two dimmensional network which is parallel to the (0 1 0) plane (Table 1, Fig. 2).

Only the relative absolute configuration could be determined, the C8 and C17 have the same absolute configuration (S,S) or (R,R). The (S,S) configuration is represented in Fig. 1.

Related literature top

For related literature, see: Allen et al. (1987); Chen & Ruan (2007); Garuti et al. (1999); Matsuno et al. (2000); Tlahuext et al. (2007).

Experimental top

All chemicals were obtained from commercial sources and used directly without further purification. Benzene-1, 2-diamine (2.16 g, 20 mmol) was dissolved in hydrochloric acid (25 mL, 4 M) at 100°C, and ethyl 2-hydroxypropanoate (2.48 g, 21 mmol) was added to the solution. The mixture were then heated to reflux for 7 h at 115°C. After cooling to room temperature, the product was divided by neutralizing the mixture solution using NaOH to make the pH 7–9. Solid product was collected by filtration and the yield was 80%. 1H-NMR(CDCl3, 300 MHz): δ1.72 (d, 3 H), 5.22 (q, 1 H), 7.47(m, 1 H), 7.58 (m, 2 H), 7.81 (m, 1 H). Esi-MS: calcd for C14H9N2O–H m/z 161.19, found 161.18. Deep-red single crystals of the title compound suitable for X-ray diffraction analysis were obtained from methanol solution by slow evaporation after a week.

Refinement top

All H atoms attached to C, O and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.96 Å (methyl or 0.93 Å (aromatic), O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(Cmethyl, O).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen bonds network. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x, y, z-1; (iii) x+1/2, -y+1/2, -z+1 ]
(±)-1-(1H-Benzimidazol-2-yl)ethanol top
Crystal data top
C9H10N2OF(000) = 688
Mr = 162.19Dx = 1.289 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 10749 reflections
a = 13.734 (3) Åθ = 2.4–28.0°
b = 15.376 (3) ŵ = 0.09 mm1
c = 7.9163 (16) ÅT = 293 K
V = 1671.7 (6) Å3Block, red
Z = 80.20 × 0.18 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
2199 independent reflections
Radiation source: fine-focus sealed tube1380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.912, Tmax = 1.00l = 1010
17487 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.22P]
where P = (Fo2 + 2Fc2)/3
2199 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H10N2OV = 1671.7 (6) Å3
Mr = 162.19Z = 8
Orthorhombic, P21212Mo Kα radiation
a = 13.734 (3) ŵ = 0.09 mm1
b = 15.376 (3) ÅT = 293 K
c = 7.9163 (16) Å0.20 × 0.18 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
2199 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1380 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 1.00Rint = 0.115
17487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2199 reflectionsΔρmin = 0.18 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6823 (3)0.3355 (2)1.1332 (4)0.0383 (9)
C20.7541 (3)0.3880 (2)1.1995 (5)0.0496 (10)
H2A0.81680.38851.15510.060*
C30.7292 (3)0.4388 (3)1.3323 (5)0.0605 (12)
H30.77600.47501.38010.073*
C40.6362 (4)0.4384 (3)1.3984 (6)0.0652 (13)
H4A0.62190.47401.49000.078*
C50.5647 (3)0.3868 (3)1.3328 (6)0.0622 (12)
H50.50210.38721.37740.075*
C60.5887 (3)0.3340 (2)1.1975 (5)0.0427 (9)
C70.5899 (3)0.2474 (2)0.9864 (5)0.0428 (9)
C80.5593 (3)0.1874 (3)0.8498 (5)0.0520 (11)
H80.48820.18230.85270.062*
C90.6018 (4)0.0985 (3)0.8690 (6)0.0919 (18)
H9A0.58320.06320.77430.138*
H9B0.57810.07250.97130.138*
H9C0.67150.10270.87370.138*
C100.3684 (3)0.3451 (2)0.6778 (5)0.0423 (9)
C110.4085 (3)0.3972 (3)0.8015 (5)0.0563 (11)
H110.47210.38880.83850.068*
C120.3517 (3)0.4614 (3)0.8676 (5)0.0614 (12)
H120.37680.49740.95140.074*
C130.2571 (3)0.4740 (3)0.8120 (5)0.0576 (11)
H130.22030.51860.85910.069*
C140.2166 (3)0.4234 (2)0.6914 (5)0.0511 (10)
H140.15270.43170.65610.061*
C150.2740 (3)0.3592 (2)0.6231 (4)0.0401 (9)
C160.3419 (2)0.2520 (2)0.4833 (4)0.0380 (8)
C170.3509 (3)0.1825 (2)0.3527 (4)0.0463 (10)
H170.29340.14500.36280.056*
C180.4389 (3)0.1262 (3)0.3790 (6)0.0581 (11)
H18A0.44140.08260.29240.087*
H18B0.43490.09860.48760.087*
H18C0.49650.16140.37390.087*
N10.68087 (19)0.27939 (19)0.9990 (3)0.0451 (8)
H1A0.72920.26690.93450.054*
N20.5316 (2)0.2773 (2)1.1042 (4)0.0486 (8)
N30.4093 (2)0.27755 (19)0.5867 (4)0.0443 (8)
N40.25902 (19)0.29851 (18)0.4998 (4)0.0425 (7)
H40.20630.29120.44290.051*
O10.58658 (16)0.2215 (2)0.6915 (3)0.0532 (7)
H10.53850.24150.64400.080*
O20.34919 (16)0.21938 (19)0.1892 (3)0.0546 (7)
H20.40180.24260.16970.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.046 (2)0.0280 (19)0.0019 (17)0.0020 (17)0.0067 (17)
C20.042 (2)0.060 (3)0.047 (2)0.0057 (19)0.000 (2)0.008 (2)
C30.065 (3)0.065 (3)0.052 (3)0.006 (2)0.009 (3)0.005 (2)
C40.086 (4)0.060 (3)0.050 (3)0.001 (3)0.002 (3)0.009 (2)
C50.059 (3)0.073 (3)0.055 (3)0.000 (2)0.018 (2)0.008 (3)
C60.041 (2)0.051 (2)0.036 (2)0.0025 (18)0.0054 (19)0.0037 (19)
C70.039 (2)0.052 (2)0.037 (2)0.0042 (19)0.0017 (19)0.0043 (18)
C80.047 (2)0.063 (3)0.046 (2)0.0012 (19)0.002 (2)0.000 (2)
C90.135 (5)0.062 (3)0.078 (4)0.008 (3)0.040 (4)0.005 (3)
C100.042 (2)0.044 (2)0.040 (2)0.0017 (17)0.007 (2)0.0045 (18)
C110.057 (3)0.057 (3)0.055 (3)0.005 (2)0.015 (2)0.003 (2)
C120.076 (3)0.057 (3)0.051 (3)0.002 (2)0.009 (3)0.003 (2)
C130.064 (3)0.056 (3)0.053 (3)0.003 (2)0.006 (3)0.006 (2)
C140.043 (2)0.054 (3)0.057 (3)0.0029 (19)0.005 (2)0.003 (2)
C150.040 (2)0.048 (2)0.0323 (19)0.0002 (18)0.0009 (18)0.0053 (18)
C160.0317 (19)0.042 (2)0.040 (2)0.0067 (16)0.0017 (18)0.0069 (17)
C170.041 (2)0.055 (2)0.042 (2)0.0082 (18)0.0007 (19)0.0018 (19)
C180.053 (2)0.056 (3)0.065 (3)0.009 (2)0.005 (2)0.005 (2)
N10.0335 (16)0.066 (2)0.0355 (16)0.0029 (15)0.0070 (15)0.0025 (17)
N20.0388 (17)0.063 (2)0.0443 (17)0.0022 (16)0.0071 (15)0.0033 (17)
N30.0394 (17)0.048 (2)0.0453 (17)0.0020 (16)0.0106 (16)0.0019 (16)
N40.0292 (15)0.0576 (19)0.0407 (16)0.0002 (15)0.0056 (15)0.0033 (17)
O10.0353 (14)0.088 (2)0.0368 (14)0.0083 (14)0.0012 (13)0.0011 (16)
O20.0335 (14)0.089 (2)0.0413 (14)0.0056 (14)0.0032 (13)0.0031 (15)
Geometric parameters (Å, º) top
C1—N11.368 (4)C10—C151.385 (5)
C1—C21.379 (5)C11—C121.364 (5)
C1—C61.383 (5)C11—H110.9300
C2—C31.354 (5)C12—C131.385 (5)
C2—H2A0.9300C12—H120.9300
C3—C41.381 (6)C13—C141.352 (5)
C3—H30.9300C13—H130.9300
C4—C51.364 (6)C14—C151.374 (5)
C4—H4A0.9300C14—H140.9300
C5—C61.384 (5)C15—N41.366 (4)
C5—H50.9300C16—N31.297 (4)
C6—N21.386 (5)C16—N41.350 (4)
C7—N21.312 (4)C16—C171.492 (5)
C7—N11.347 (4)C17—O21.413 (4)
C7—C81.482 (5)C17—C181.501 (5)
C8—O11.410 (4)C17—H170.9800
C8—C91.494 (6)C18—H18A0.9600
C8—H80.9800C18—H18B0.9600
C9—H9A0.9600C18—H18C0.9600
C9—H9B0.9600N1—H1A0.8600
C9—H9C0.9600N4—H40.8600
C10—C111.379 (5)O1—H10.8200
C10—N31.384 (4)O2—H20.8200
N1—C1—C2132.5 (3)C10—C11—H11121.2
N1—C1—C6105.2 (3)C11—C12—C13121.1 (4)
C2—C1—C6122.3 (3)C11—C12—H12119.5
C3—C2—C1116.9 (4)C13—C12—H12119.5
C3—C2—H2A121.5C14—C13—C12122.0 (4)
C1—C2—H2A121.5C14—C13—H13119.0
C2—C3—C4121.7 (4)C12—C13—H13119.0
C2—C3—H3119.1C13—C14—C15117.1 (4)
C4—C3—H3119.1C13—C14—H14121.5
C5—C4—C3121.6 (4)C15—C14—H14121.5
C5—C4—H4A119.2N4—C15—C14133.3 (4)
C3—C4—H4A119.2N4—C15—C10105.0 (3)
C4—C5—C6117.6 (4)C14—C15—C10121.8 (4)
C4—C5—H5121.2N3—C16—N4112.4 (3)
C6—C5—H5121.2N3—C16—C17126.5 (3)
C1—C6—C5119.8 (4)N4—C16—C17121.1 (3)
C1—C6—N2109.9 (3)O2—C17—C16110.2 (3)
C5—C6—N2130.3 (4)O2—C17—C18111.8 (3)
N2—C7—N1112.6 (3)C16—C17—C18112.6 (3)
N2—C7—C8124.3 (3)O2—C17—H17107.3
N1—C7—C8123.0 (3)C16—C17—H17107.3
O1—C8—C7110.0 (3)C18—C17—H17107.3
O1—C8—C9109.1 (4)C17—C18—H18A109.5
C7—C8—C9112.6 (3)C17—C18—H18B109.5
O1—C8—H8108.4H18A—C18—H18B109.5
C7—C8—H8108.4C17—C18—H18C109.5
C9—C8—H8108.4H18A—C18—H18C109.5
C8—C9—H9A109.5H18B—C18—H18C109.5
C8—C9—H9B109.5C7—N1—C1107.5 (3)
H9A—C9—H9B109.5C7—N1—H1A126.2
C8—C9—H9C109.5C1—N1—H1A126.2
H9A—C9—H9C109.5C7—N2—C6104.7 (3)
H9B—C9—H9C109.5C16—N3—C10105.4 (3)
C11—C10—N3130.1 (3)C16—N4—C15107.7 (3)
C11—C10—C15120.4 (4)C16—N4—H4126.2
N3—C10—C15109.5 (3)C15—N4—H4126.2
C12—C11—C10117.6 (4)C8—O1—H1109.5
C12—C11—H11121.2C17—O2—H2109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.821.912.713 (4)165
N4—H4···O1i0.861.972.828 (4)178
O2—H2···N2ii0.821.932.743 (4)170
N1—H1A···O2iii0.861.932.751 (4)160
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y, z1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H10N2O
Mr162.19
Crystal system, space groupOrthorhombic, P21212
Temperature (K)293
a, b, c (Å)13.734 (3), 15.376 (3), 7.9163 (16)
V3)1671.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.912, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
17487, 2199, 1380
Rint0.115
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.123, 1.07
No. of reflections2199
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.821.912.713 (4)164.6
N4—H4···O1i0.861.972.828 (4)178.0
O2—H2···N2ii0.821.932.743 (4)169.6
N1—H1A···O2iii0.861.932.751 (4)159.6
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y, z1; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

HJX acknowledges a Start-up Grant from Southeast University, P. R. China

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationChen, J. & Ruan, Y. (2007). Acta Cryst. E63, m2964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525–2530.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778–1781.  CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTlahuext, H., Tlahuextl, M., López-Gómez, S. & Tapia-Benavides, A. R. (2007). Acta Cryst. E63, m1263–m1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds