metal-organic compounds
Poly[hexaaquatri-μ-malonato-didysprosium(III)]
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhqfang77@yahoo.com.cn
The title compound, [Dy2(C3H2O4)3(H2O)6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the there are one dysprosium ion, one and a half malonate ligands, and three water molecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water molecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability.
Related literature
For related literature, see: Iglesias et al. (2003); Kim et al. (2003); Moulton & Zaworotko (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808015961/dn2344sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015961/dn2344Isup2.hkl
A mixture of Dy(NO3)3 (0.1 mmol), malonato acid (0.15 mmol), NaOH (0.1 mmol), water (10 ml) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to and maintained at 433 K for 7 days, and then cooled to room temperature at 5 K h-1 to obtain the colorless block crystals.
Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.30 Å, and with Uiso(H) = 1.5 Ueq(O), and then were treated as riding mode. Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Dy2(C3H2O4)3(H2O)6] | F(000) = 1392 |
Mr = 739.23 | Dx = 2.624 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6377 reflections |
a = 17.1805 (2) Å | θ = 1.7–28.0° |
b = 12.3124 (1) Å | µ = 8.02 mm−1 |
c = 11.1541 (1) Å | T = 296 K |
β = 127.52 (2)° | Block, colorless |
V = 1871.4 (5) Å3 | 0.11 × 0.10 × 0.08 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 2136 independent reflections |
Radiation source: fine-focus sealed tube | 2001 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (APEX2; Bruker, 2004) | h = −22→20 |
Tmin = 0.435, Tmax = 0.529 | k = −15→15 |
10051 measured reflections | l = −12→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0241P)2 + 12.727P] where P = (Fo2 + 2Fc2)/3 |
2136 reflections | (Δ/σ)max = 0.001 |
132 parameters | Δρmax = 0.91 e Å−3 |
10 restraints | Δρmin = −0.51 e Å−3 |
[Dy2(C3H2O4)3(H2O)6] | V = 1871.4 (5) Å3 |
Mr = 739.23 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.1805 (2) Å | µ = 8.02 mm−1 |
b = 12.3124 (1) Å | T = 296 K |
c = 11.1541 (1) Å | 0.11 × 0.10 × 0.08 mm |
β = 127.52 (2)° |
Bruker APEXII area-detector diffractometer | 2136 independent reflections |
Absorption correction: multi-scan (APEX2; Bruker, 2004) | 2001 reflections with I > 2σ(I) |
Tmin = 0.435, Tmax = 0.529 | Rint = 0.023 |
10051 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 10 restraints |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0241P)2 + 12.727P] where P = (Fo2 + 2Fc2)/3 |
2136 reflections | Δρmax = 0.91 e Å−3 |
132 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.3116 (3) | 0.3839 (3) | 0.2419 (4) | 0.0139 (7) | |
C2 | 0.3805 (3) | 0.3285 (3) | 0.2198 (5) | 0.0174 (7) | |
H2A | 0.4462 | 0.3325 | 0.3148 | 0.021* | |
H2B | 0.3808 | 0.3704 | 0.1464 | 0.021* | |
C3 | 0.3607 (3) | 0.2110 (3) | 0.1686 (4) | 0.0137 (7) | |
C4 | 0.4246 (2) | 0.2993 (3) | 0.6243 (4) | 0.0119 (7) | |
C5 | 0.5000 | 0.3747 (4) | 0.7500 | 0.0135 (10) | |
H5A | 0.4703 | 0.4205 | 0.7829 | 0.016* | 0.50 |
H5B | 0.5297 | 0.4205 | 0.7171 | 0.016* | 0.50 |
Dy1 | 0.283235 (12) | 0.148077 (13) | 0.379865 (19) | 0.01461 (7) | |
O1 | 0.2989 (2) | 0.4832 (2) | 0.2144 (4) | 0.0268 (6) | |
O2 | 0.2741 (2) | 0.3315 (2) | 0.2918 (3) | 0.0165 (5) | |
O3 | 0.3717 (2) | 0.1844 (2) | 0.0723 (3) | 0.0256 (6) | |
O4 | 0.3355 (2) | 0.14437 (19) | 0.2259 (3) | 0.0200 (6) | |
O5 | 0.44917 (18) | 0.2424 (2) | 0.5591 (3) | 0.0192 (5) | |
O6 | 0.34060 (17) | 0.2909 (2) | 0.5918 (3) | 0.0144 (5) | |
O1W | 0.1257 (2) | 0.1789 (2) | 0.1179 (3) | 0.0226 (6) | |
H1W | 0.0785 | 0.2029 | 0.1100 | 0.034* | |
H2W | 0.1369 | 0.2230 | 0.0756 | 0.034* | |
O2W | 0.4141 (3) | 0.0048 (3) | 0.4897 (5) | 0.0435 (10) | |
H3W | 0.4088 | −0.0512 | 0.5238 | 0.065* | |
H4W | 0.4700 | 0.0253 | 0.5538 | 0.065* | |
O3W | 0.3194 (2) | 0.0640 (2) | 0.6116 (4) | 0.0322 (7) | |
H6W | 0.3294 | −0.0003 | 0.6333 | 0.048* | |
H5W | 0.3019 | 0.0889 | 0.6593 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0179 (17) | 0.0087 (15) | 0.0121 (17) | 0.0002 (13) | 0.0077 (15) | −0.0012 (13) |
C2 | 0.0267 (19) | 0.0119 (16) | 0.024 (2) | −0.0038 (14) | 0.0211 (18) | −0.0010 (14) |
C3 | 0.0166 (17) | 0.0121 (16) | 0.0163 (18) | −0.0007 (13) | 0.0119 (15) | −0.0004 (13) |
C4 | 0.0099 (15) | 0.0139 (16) | 0.0082 (16) | −0.0002 (12) | 0.0037 (14) | 0.0026 (13) |
C5 | 0.010 (2) | 0.011 (2) | 0.014 (2) | 0.000 | 0.005 (2) | 0.000 |
Dy1 | 0.01901 (10) | 0.01230 (10) | 0.01759 (11) | −0.00036 (6) | 0.01376 (8) | −0.00016 (6) |
O1 | 0.0366 (17) | 0.0102 (12) | 0.0372 (18) | 0.0042 (11) | 0.0244 (15) | 0.0062 (12) |
O2 | 0.0249 (14) | 0.0116 (12) | 0.0203 (14) | 0.0034 (10) | 0.0175 (12) | 0.0027 (10) |
O3 | 0.0474 (18) | 0.0187 (14) | 0.0288 (16) | −0.0005 (13) | 0.0326 (16) | −0.0014 (12) |
O4 | 0.0366 (16) | 0.0100 (12) | 0.0276 (16) | −0.0013 (10) | 0.0270 (14) | −0.0012 (10) |
O5 | 0.0137 (12) | 0.0264 (14) | 0.0183 (13) | −0.0008 (10) | 0.0102 (11) | −0.0068 (11) |
O6 | 0.0104 (11) | 0.0196 (13) | 0.0131 (12) | −0.0015 (9) | 0.0072 (10) | −0.0016 (10) |
O1W | 0.0206 (14) | 0.0300 (15) | 0.0198 (15) | −0.0003 (12) | 0.0137 (12) | 0.0065 (12) |
O2W | 0.0431 (19) | 0.0277 (17) | 0.085 (3) | 0.0166 (15) | 0.052 (2) | 0.0281 (18) |
O3W | 0.063 (2) | 0.0176 (14) | 0.0415 (19) | 0.0177 (14) | 0.0450 (18) | 0.0154 (13) |
C1—O1 | 1.247 (4) | Dy1—O4 | 2.375 (3) |
C1—O2 | 1.256 (4) | Dy1—O2 | 2.430 (2) |
C1—C2 | 1.512 (5) | Dy1—O6iii | 2.452 (2) |
C2—C3 | 1.516 (5) | Dy1—O3W | 2.487 (3) |
C2—H2A | 0.9700 | Dy1—O2W | 2.513 (3) |
C2—H2B | 0.9700 | Dy1—O1W | 2.524 (3) |
C3—O3 | 1.243 (4) | Dy1—O5 | 2.555 (3) |
C3—O4 | 1.266 (4) | Dy1—O6 | 2.610 (2) |
C4—O5 | 1.254 (4) | O1W—H1W | 0.8155 |
C4—O6 | 1.260 (4) | O1W—H2W | 0.8146 |
C4—C5 | 1.514 (4) | O2W—H3W | 0.8184 |
C5—C4i | 1.514 (4) | O2W—H4W | 0.8133 |
C5—H5A | 0.9700 | O3W—H6W | 0.8149 |
C5—H5B | 0.9700 | O3W—H5W | 0.8144 |
Dy1—O1ii | 2.326 (3) | ||
O1—C1—O2 | 123.5 (3) | O4—Dy1—O1W | 77.10 (10) |
O1—C1—C2 | 116.0 (3) | O2—Dy1—O1W | 68.42 (9) |
O2—C1—C2 | 120.4 (3) | O6iii—Dy1—O1W | 72.58 (9) |
C1—C2—C3 | 118.3 (3) | O3W—Dy1—O1W | 132.74 (10) |
C1—C2—H2A | 107.7 | O2W—Dy1—O1W | 132.85 (12) |
C3—C2—H2A | 107.7 | O1ii—Dy1—O5 | 146.20 (10) |
C1—C2—H2B | 107.7 | O4—Dy1—O5 | 80.87 (9) |
C3—C2—H2B | 107.7 | O2—Dy1—O5 | 70.15 (9) |
H2A—C2—H2B | 107.1 | O6iii—Dy1—O5 | 113.70 (8) |
O3—C3—O4 | 123.0 (3) | O3W—Dy1—O5 | 85.58 (10) |
O3—C3—C2 | 117.3 (3) | O2W—Dy1—O5 | 72.37 (10) |
O4—C3—C2 | 119.7 (3) | O1W—Dy1—O5 | 137.36 (9) |
O5—C4—O6 | 121.2 (3) | O1ii—Dy1—O6 | 141.99 (9) |
O5—C4—C5 | 118.7 (3) | O4—Dy1—O6 | 124.57 (8) |
O6—C4—C5 | 120.1 (3) | O2—Dy1—O6 | 68.62 (8) |
C4—C5—C4i | 104.4 (4) | O6iii—Dy1—O6 | 63.60 (9) |
C4—C5—H5A | 110.9 | O3W—Dy1—O6 | 67.78 (9) |
C4i—C5—H5A | 110.9 | O2W—Dy1—O6 | 107.42 (11) |
C4—C5—H5B | 110.9 | O1W—Dy1—O6 | 119.61 (9) |
C4i—C5—H5B | 110.9 | O5—Dy1—O6 | 50.15 (8) |
H5A—C5—H5B | 108.9 | C1—O1—Dy1iv | 159.0 (3) |
O1ii—Dy1—O4 | 92.80 (10) | C1—O2—Dy1 | 137.0 (2) |
O1ii—Dy1—O2 | 139.15 (10) | C3—O4—Dy1 | 138.4 (2) |
O4—Dy1—O2 | 71.67 (8) | C4—O5—Dy1 | 95.7 (2) |
O1ii—Dy1—O6iii | 89.46 (9) | C4—O6—Dy1iii | 150.4 (2) |
O4—Dy1—O6iii | 147.09 (9) | C4—O6—Dy1 | 92.9 (2) |
O2—Dy1—O6iii | 85.38 (8) | Dy1iii—O6—Dy1 | 116.40 (9) |
O1ii—Dy1—O3W | 78.76 (11) | Dy1—O1W—H1W | 118.3 |
O4—Dy1—O3W | 141.16 (9) | Dy1—O1W—H2W | 107.9 |
O2—Dy1—O3W | 136.14 (9) | H1W—O1W—H2W | 105.4 |
O6iii—Dy1—O3W | 71.36 (9) | Dy1—O2W—H3W | 119.8 |
O1ii—Dy1—O2W | 73.98 (11) | Dy1—O2W—H4W | 115.9 |
O4—Dy1—O2W | 73.66 (10) | H3W—O2W—H4W | 105.1 |
O2—Dy1—O2W | 131.94 (9) | Dy1—O3W—H6W | 126.0 |
O6iii—Dy1—O2W | 137.86 (9) | Dy1—O3W—H5W | 124.4 |
O3W—Dy1—O2W | 67.55 (10) | H6W—O3W—H5W | 105.5 |
O1ii—Dy1—O1W | 71.37 (10) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, −y+1/2, −z+1; (iv) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5v | 0.82 | 2.04 | 2.854 (4) | 172 |
O1W—H2W···O3vi | 0.81 | 1.94 | 2.729 (4) | 165 |
O2W—H3W···O3vii | 0.82 | 1.95 | 2.761 (4) | 170 |
O3W—H6W···O4vii | 0.81 | 2.02 | 2.802 (4) | 160 |
O3W—H6W···O3vii | 0.81 | 2.59 | 3.291 (4) | 144 |
O3W—H5W···O2iii | 0.81 | 1.96 | 2.738 (4) | 161 |
Symmetry codes: (iii) −x+1/2, −y+1/2, −z+1; (v) x−1/2, −y+1/2, z−1/2; (vi) −x+1/2, −y+1/2, −z; (vii) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Dy2(C3H2O4)3(H2O)6] |
Mr | 739.23 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 17.1805 (2), 12.3124 (1), 11.1541 (1) |
β (°) | 127.52 (2) |
V (Å3) | 1871.4 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.02 |
Crystal size (mm) | 0.11 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (APEX2; Bruker, 2004) |
Tmin, Tmax | 0.435, 0.529 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10051, 2136, 2001 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.053, 1.07 |
No. of reflections | 2136 |
No. of parameters | 132 |
No. of restraints | 10 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0241P)2 + 12.727P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.91, −0.51 |
Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5i | 0.82 | 2.04 | 2.854 (4) | 172.1 |
O1W—H2W···O3ii | 0.81 | 1.94 | 2.729 (4) | 164.5 |
O2W—H3W···O3iii | 0.82 | 1.95 | 2.761 (4) | 169.7 |
O3W—H6W···O4iii | 0.81 | 2.02 | 2.802 (4) | 160.0 |
O3W—H6W···O3iii | 0.81 | 2.59 | 3.291 (4) | 144.4 |
O3W—H5W···O2iv | 0.81 | 1.96 | 2.738 (4) | 161.0 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, −y+1/2, −z; (iii) x, −y, z+1/2; (iv) −x+1/2, −y+1/2, −z+1. |
Acknowledgements
The authors acknowledge South China Normal University for supporting this work.
References
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Iglesias, S., Castillo, O., Luque, A. & Romaan, P. (2003). Inorg. Chim. Acta, 349, 273–278. Web of Science CSD CrossRef CAS Google Scholar
Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 474–477. Web of Science CSD CrossRef CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Kim et al., 2003; Iglesias et al., 2003; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metals ions and bridging building blocks as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. Recently, we obtained the title compound, (I), by the hydrothermal reaction of Dy(NO3)3 with malonic acid in alkaline aqueous solution.
As illustrated in Fig. 1, in the asymmetric unit of complex (I), each DyIII centre is coordinated by six carboxyl O atoms from four malonate ligands, and three water molecules. The two unique malonate ligands act as two types of chelating and bridging modes: one lies on an inversion centre and uses each carboxylate group to bond to two DyIII ions; one uses three carboxyl O atoms to coordinate to two DyIII ions involving a six-membered chelate ring. The adjacent Dy···Dy separations are 4.303 (3), 6.600 (1) and 6.982 (2) Å respectively. The ligands link dysprosium centres to form a three-dimensional coordination polymer which is also stabilized by the extensive network of hydrogen bonding interactions (Fig. 2; Table 1).