metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di-μ-bromido-dicopper(I)]bis­­[μ-η2,σ1-4-(2-allyl-2H-tetra­zol-5-yl)pyridine]]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seu_ww@yahoo.com.cn

(Received 24 April 2008; accepted 29 April 2008; online 7 June 2008)

The title compound, [CuBr(C9H9N5)]n, prepared by the solvothermal treatment of CuBr with 4-(2-allyl-2H-tetra­zol-5-yl)pyridine, is a new homometallic CuI–olefin coordination polymer in which dinuclear Cu2Br2 units are linked by the organic olefin ligand 4-(2-allyl-2H-tetra­zol-5-yl)pyridine, which acts as a bidentate ligand connecting two neighbouring Cu2Br2 units through the pyridine N atom and the double bond of the allyl group. The coordination of Cu(I) is slightly distorted tetrahedral.

Related literature

For the solvothermal synthesis and related structures, see: Ye et al. (2005[Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208-225.], 2007[Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C9H9N5)]

  • Mr = 330.66

  • Monoclinic, C 2/c

  • a = 17.502 (3) Å

  • b = 12.047 (2) Å

  • c = 13.664 (3) Å

  • β = 129.52 (3)°

  • V = 2222.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.54 mm−1

  • T = 293 (2) K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.661, Tmax = 1 (expected range = 0.380–0.575)

  • 11222 measured reflections

  • 2552 independent reflections

  • 1962 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.07

  • 2552 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Johnson & Burnett, 1997[Johnson, C. K. & Burnett, M. N. (1997). ORTEPIII. University of Glasgow, Scotland.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrothermal or solvothermal syntheses can offer some interesting reactions and compounds which can't be obtain through conventional solution techniques. In sealed tube, unstable copper (I) salt can exist under vacuums, and then interesting copper (I) organometallic compound can be prepared. The title compound is obtained through solvothermal treatment of CuBr and 4-(2-allyl-2H-tetrazol -5-yl) pyridine in methanol solvent at 75°C.

The copper(I) is coordinated to two organic ligands and two bridging Br atoms to fulfill its tetrahedral coordination environment (Fig 1).The organic ligand acts as a bidentate ligand connecting two neighbouring Cu2Br2 dinucler units through N atom from pyridine ring and double bond of the allyl group thus leading to an homometallic CuI olefin coordination polymer developing along the b axis. Unfortunately, the N atoms of the tetrazole ring fail to coordinate to CuI.

Related literature top

For the solvothermal synthesis and related structures, see: Ye et al. (2005, 2007).

Experimental top

A mixture of 4-(2-allyl-2H-tetrazol-5-yl) pyridine(20 mg, 0.2 mmol), CuBr (35 mg,0.4 mmol), and methanol (2 ml) sealed in a glass tube were maintained at 75 °C with yield 75%. Crystals suitable for X-ray analysis were obtained after 5 days

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98 Å (methine) with Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Johnson & Burnett, 1997) and ORTEP-32 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The one-dimensional structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii)x, y - 1, z; (C) x, y + 1, z; (iii) 1 - x, 1 + y, 3/2 - z.].
catena-Poly[[di-µ-bromido-dicopper(I)]bis[µ-η2,σ1- 4-(2-allyl-2H-tetrazol-5-yl)pyridine]] top
Crystal data top
[CuBr(C9H9N5)]F(000) = 1296
Mr = 330.66Dx = 1.977 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10074 reflections
a = 17.502 (3) Åθ = 3.0–28.8°
b = 12.047 (2) ŵ = 5.54 mm1
c = 13.664 (3) ÅT = 293 K
β = 129.52 (3)°Block, colorless
V = 2222.4 (12) Å30.2 × 0.15 × 0.1 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
2552 independent reflections
Radiation source: fine-focus sealed tube1962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 2222
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.661, Tmax = 1l = 1717
11222 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.03P)2 + 4.1679P]
where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[CuBr(C9H9N5)]V = 2222.4 (12) Å3
Mr = 330.66Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.502 (3) ŵ = 5.54 mm1
b = 12.047 (2) ÅT = 293 K
c = 13.664 (3) Å0.2 × 0.15 × 0.1 mm
β = 129.52 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2552 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1962 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 1Rint = 0.050
11222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
2552 reflectionsΔρmin = 0.77 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.39530 (4)0.00789 (3)0.59335 (4)0.03898 (15)
Br10.41669 (3)0.00735 (3)0.79367 (3)0.03492 (12)
N10.4034 (2)0.4106 (2)0.5433 (3)0.0379 (8)
N20.3650 (3)0.4582 (3)0.3597 (3)0.0448 (8)
N30.3835 (3)0.3508 (3)0.3743 (3)0.0475 (9)
N40.4055 (2)0.3250 (2)0.4833 (3)0.0363 (7)
N50.3645 (2)0.8317 (2)0.5386 (3)0.0319 (7)
C10.2905 (3)0.0849 (3)0.4367 (4)0.0397 (9)
H1A0.29090.08070.36610.048*
H1B0.22430.08360.41050.048*
C20.3548 (3)0.1574 (3)0.5299 (4)0.0376 (9)
H20.32950.20010.56480.045*
C30.4350 (3)0.2120 (3)0.5368 (4)0.0449 (10)
H3A0.49500.21570.62460.054*
H3B0.44880.16810.49020.054*
C40.3456 (3)0.6920 (3)0.4013 (3)0.0356 (9)
H40.33170.67420.32510.043*
C50.3673 (2)0.6090 (3)0.4859 (3)0.0285 (7)
C60.3807 (3)0.7513 (3)0.6168 (3)0.0338 (8)
H60.39090.77110.69010.041*
C70.3451 (3)0.8007 (3)0.4310 (3)0.0366 (9)
H70.33040.85540.37320.044*
C80.3830 (3)0.6403 (3)0.5945 (3)0.0338 (8)
H80.39510.58710.65220.041*
C90.3769 (3)0.4926 (3)0.4619 (3)0.0315 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0551 (3)0.0158 (2)0.0379 (3)0.0008 (2)0.0258 (2)0.00052 (17)
Br10.0433 (2)0.0305 (2)0.0396 (2)0.00627 (16)0.03041 (19)0.00676 (15)
N10.0484 (19)0.0190 (15)0.0431 (19)0.0017 (14)0.0276 (17)0.0017 (13)
N20.062 (2)0.0236 (16)0.043 (2)0.0066 (16)0.0307 (18)0.0007 (14)
N30.068 (2)0.0244 (17)0.048 (2)0.0036 (16)0.036 (2)0.0030 (14)
N40.0409 (18)0.0135 (14)0.050 (2)0.0011 (13)0.0271 (17)0.0007 (13)
N50.0372 (17)0.0154 (14)0.0352 (17)0.0002 (12)0.0193 (15)0.0010 (12)
C10.039 (2)0.0268 (19)0.048 (2)0.0042 (16)0.0248 (19)0.0102 (17)
C20.057 (2)0.0164 (17)0.047 (2)0.0117 (17)0.037 (2)0.0068 (15)
C30.044 (2)0.0163 (18)0.064 (3)0.0055 (16)0.029 (2)0.0065 (17)
C40.051 (2)0.0209 (17)0.031 (2)0.0029 (16)0.0243 (19)0.0024 (14)
C50.0269 (17)0.0171 (16)0.0332 (18)0.0031 (14)0.0153 (16)0.0011 (13)
C60.045 (2)0.0199 (17)0.038 (2)0.0036 (15)0.0272 (19)0.0026 (15)
C70.049 (2)0.0185 (17)0.037 (2)0.0002 (16)0.0248 (19)0.0047 (15)
C80.042 (2)0.0199 (17)0.036 (2)0.0025 (15)0.0236 (18)0.0034 (14)
C90.0322 (17)0.0168 (17)0.0372 (19)0.0029 (14)0.0182 (16)0.0003 (14)
Geometric parameters (Å, º) top
Cu1—N5i2.017 (3)C1—H1A0.9700
Cu1—C12.050 (4)C1—H1B0.9700
Cu1—C22.106 (3)C2—C31.496 (6)
Cu1—Br12.5156 (9)C2—H20.9800
Cu1—Br1ii2.5973 (11)C3—H3A0.9700
Br1—Cu1ii2.5973 (11)C3—H3B0.9700
N1—C91.330 (4)C4—C71.373 (5)
N1—N41.332 (4)C4—C51.386 (5)
N2—N31.317 (4)C4—H40.9300
N2—C91.340 (5)C5—C81.378 (5)
N3—N41.317 (5)C5—C91.475 (4)
N4—C31.475 (4)C6—C81.378 (5)
N5—C61.332 (4)C6—H60.9300
N5—C71.334 (4)C7—H70.9300
N5—Cu1iii2.017 (3)C8—H80.9300
C1—C21.351 (5)
N5i—Cu1—C1106.55 (13)C3—C2—Cu1109.5 (2)
N5i—Cu1—C2144.30 (14)C1—C2—H2115.7
C1—Cu1—C237.93 (14)C3—C2—H2115.7
N5i—Cu1—Br1103.04 (9)Cu1—C2—H2115.7
C1—Cu1—Br1123.33 (12)N4—C3—C2110.9 (3)
C2—Cu1—Br1102.94 (10)N4—C3—H3A109.5
N5i—Cu1—Br1ii99.28 (9)C2—C3—H3A109.5
C1—Cu1—Br1ii124.96 (11)N4—C3—H3B109.5
C2—Cu1—Br1ii102.07 (11)C2—C3—H3B109.5
Br1—Cu1—Br1ii95.64 (4)H3A—C3—H3B108.0
Cu1—Br1—Cu1ii84.36 (4)C7—C4—C5119.4 (3)
C9—N1—N4101.0 (3)C7—C4—H4120.3
N3—N2—C9106.6 (3)C5—C4—H4120.3
N4—N3—N2105.6 (3)C8—C5—C4117.6 (3)
N3—N4—N1114.3 (3)C8—C5—C9121.8 (3)
N3—N4—C3122.5 (3)C4—C5—C9120.6 (3)
N1—N4—C3123.2 (3)N5—C6—C8123.3 (3)
C6—N5—C7117.1 (3)N5—C6—H6118.3
C6—N5—Cu1iii121.9 (2)C8—C6—H6118.3
C7—N5—Cu1iii119.8 (2)N5—C7—C4123.2 (3)
C2—C1—Cu173.3 (2)N5—C7—H7118.4
C2—C1—H1A116.2C4—C7—H7118.4
Cu1—C1—H1A116.2C6—C8—C5119.3 (3)
C2—C1—H1B116.2C6—C8—H8120.3
Cu1—C1—H1B116.2C5—C8—H8120.3
H1A—C1—H1B113.2N1—C9—N2112.5 (3)
C1—C2—C3122.0 (4)N1—C9—C5123.2 (3)
C1—C2—Cu168.8 (2)N2—C9—C5124.2 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+3/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CuBr(C9H9N5)]
Mr330.66
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.502 (3), 12.047 (2), 13.664 (3)
β (°) 129.52 (3)
V3)2222.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)5.54
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.661, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
11222, 2552, 1962
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.088, 1.07
No. of reflections2552
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.77

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Johnson & Burnett, 1997) and ORTEP-32 for Windows (Farrugia, 1997).

 

Acknowledgements

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. & Burnett, M. N. (1997). ORTEPIII. University of Glasgow, Scotland.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225.  Web of Science PubMed CAS Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds