metal-organic compounds
The one-dimensional organic inorganic hybrid compound poly[(diethylenetriamine)tetra-μ-iodido-dilead(II)]
aLaboratoire de Physique appliquée (LPA), Faculté des Sciences de Sfax, 3018, BP 802, Tunisia, bLaboratoire de Matériaux et Cristallochimie, Institut préparatoire aux études ingénieur de Nabeul, 8000 Mrezga, Nabeul, Tunisia, and cLaboratoire de Cristallochimie et des Matériaux, Faculté des Sciences de Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn
A new organic–inorganic hybrid, [Pb2I4(C4H13N3)]n, was obtained by the reaction of C4N3H10 and PbI2 at room temperature. The structure is a three-dimensional polymer resulting from the association of PbI6 octahedra and a mixed lead organic–inorganic PbI4(C4N3H13) Both Pb atoms, two I atoms and one N atom lie on a mirror plane. N—H⋯I hydrogen bonds further connect the organic unit and some I atoms.
Related literature
For related literature, see: Lode & Krautscheild (2001); Krautscheild et al. (2001); Papavassiliou et al. (1999); Wang et al. (1995); Zhu et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808013913/dn2346sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013913/dn2346Isup2.hkl
An aqueous solution of HI was added to the diethylentriamin to synthesis C4H13N3I3 salts. Under ambient conditions, stoechiometric amounts of C4H13N3I3 and PbI2 with excess HI (to improve PbI2 solubility), were sailed in DMF. The resulting solution was kept at room temperature. Yellow needle-like crystals are obtained five weeks later.
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å (CH2) and N—H = 0.90Å (NH2) or 0.91Å (NH) 0.86 Å with Uiso(H) = 1.2Ueq (C or N).
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Pb2I4(C4H13N3)] | F(000) = 1736 |
Mr = 1025.15 | Dx = 3.910 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 25 reflections |
a = 17.034 (6) Å | θ = 10.7–13.8° |
b = 9.218 (3) Å | µ = 26.38 mm−1 |
c = 11.092 (4) Å | T = 293 K |
V = 1741.6 (10) Å3 | Needle, yellow |
Z = 4 | 0.2 × 0.05 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | 1202 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.045 |
Graphite monochromator | θmax = 27.0°, θmin = 2.2° |
Non–profiled ω/2θ scans | h = −1→21 |
Absorption correction: ψ scan (North et al., 1968) | k = −11→3 |
Tmin = 0.095, Tmax = 0.268 | l = −1→14 |
2906 measured reflections | 2 standard reflections every 120 min |
1998 independent reflections | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3 |
1998 reflections | (Δ/σ)max < 0.001 |
67 parameters | Δρmax = 1.57 e Å−3 |
0 restraints | Δρmin = −1.58 e Å−3 |
[Pb2I4(C4H13N3)] | V = 1741.6 (10) Å3 |
Mr = 1025.15 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 17.034 (6) Å | µ = 26.38 mm−1 |
b = 9.218 (3) Å | T = 293 K |
c = 11.092 (4) Å | 0.2 × 0.05 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | 1202 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.045 |
Tmin = 0.095, Tmax = 0.268 | 2 standard reflections every 120 min |
2906 measured reflections | intensity decay: 5% |
1998 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.00 | Δρmax = 1.57 e Å−3 |
1998 reflections | Δρmin = −1.58 e Å−3 |
67 parameters |
Experimental. Number of psi-scan sets used was 4 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied (North et al.,1968). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.49490 (3) | 0.2500 | 0.49379 (7) | 0.0376 (2) | |
Pb2 | 0.23035 (4) | 0.2500 | 0.86880 (7) | 0.0361 (2) | |
I1 | 0.32678 (7) | 0.2500 | 0.61874 (12) | 0.0482 (4) | |
I2 | 0.66724 (7) | 0.2500 | 0.36339 (11) | 0.0441 (3) | |
I3 | 0.43945 (5) | −0.00127 (10) | 0.31479 (9) | 0.0458 (3) | |
N1 | 0.2835 (7) | −0.0102 (10) | 0.8986 (11) | 0.049 (3) | |
H1A | 0.2469 | −0.0639 | 0.9365 | 0.059* | |
H1B | 0.2922 | −0.0506 | 0.8260 | 0.059* | |
N2 | 0.3598 (9) | 0.2500 | 0.9763 (17) | 0.055 (5) | |
H2 | 0.3467 | 0.2500 | 1.0558 | 0.066* | |
C2 | 0.4032 (8) | 0.113 (2) | 0.9595 (18) | 0.079 (6) | |
H2C | 0.4281 | 0.1143 | 0.8807 | 0.094* | |
H2D | 0.4445 | 0.1075 | 1.0195 | 0.094* | |
C1 | 0.3559 (10) | −0.0133 (16) | 0.9684 (18) | 0.076 (6) | |
H1C | 0.3426 | −0.0282 | 1.0525 | 0.091* | |
H1D | 0.3867 | −0.0961 | 0.9425 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.0375 (4) | 0.0355 (4) | 0.0399 (4) | 0.000 | 0.0008 (3) | 0.000 |
Pb2 | 0.0285 (3) | 0.0402 (4) | 0.0397 (4) | 0.000 | 0.0006 (3) | 0.000 |
I1 | 0.0465 (7) | 0.0557 (8) | 0.0425 (8) | 0.000 | 0.0098 (7) | 0.000 |
I2 | 0.0429 (7) | 0.0507 (8) | 0.0388 (7) | 0.000 | 0.0023 (6) | 0.000 |
I3 | 0.0484 (5) | 0.0472 (6) | 0.0419 (5) | −0.0063 (4) | −0.0028 (4) | −0.0008 (5) |
N1 | 0.060 (7) | 0.025 (6) | 0.062 (9) | 0.006 (5) | 0.010 (6) | 0.001 (6) |
N2 | 0.043 (8) | 0.062 (12) | 0.059 (12) | 0.000 | −0.015 (9) | 0.000 |
C2 | 0.048 (9) | 0.084 (14) | 0.103 (16) | 0.013 (10) | −0.007 (10) | 0.011 (13) |
C1 | 0.088 (12) | 0.043 (10) | 0.096 (16) | 0.017 (9) | −0.023 (12) | 0.001 (11) |
Pb1—I1 | 3.1816 (17) | N1—H1A | 0.9000 |
Pb1—I3 | 3.1936 (13) | N1—H1B | 0.9000 |
Pb1—I2 | 3.2725 (16) | N2—C2 | 1.476 (18) |
Pb1—I3i | 3.3190 (13) | N2—H2 | 0.9100 |
Pb2—N2 | 2.506 (15) | C2—C1 | 1.42 (2) |
Pb2—N1 | 2.585 (10) | C2—H2C | 0.9700 |
Pb2—I2ii | 3.1591 (18) | C2—H2D | 0.9700 |
Pb2—I1 | 3.2236 (17) | C1—H1C | 0.9700 |
Pb2—I3iii | 3.7392 (17) | C1—H1D | 0.9700 |
N1—C1 | 1.457 (19) | ||
I1—Pb1—I3 | 90.26 (3) | Pb1ix—I3—Pb2viii | 74.61 (2) |
I3—Pb1—I3iv | 92.98 (5) | Pb1—I1—Pb2 | 146.46 (5) |
I1—Pb1—I2 | 179.59 (4) | Pb2x—I2—Pb1 | 83.66 (4) |
I3—Pb1—I2 | 89.46 (3) | Pb1—I3—Pb1ix | 90.21 (4) |
I1—Pb1—I3i | 91.41 (3) | C1—N1—Pb2 | 112.5 (8) |
I3—Pb1—I3i | 176.76 (3) | C1—N1—H1A | 109.1 |
I3iv—Pb1—I3i | 89.79 (4) | Pb2—N1—H1A | 109.1 |
I2—Pb1—I3i | 88.88 (3) | C1—N1—H1B | 109.1 |
I3—Pb1—I3v | 89.79 (4) | Pb2—N1—H1B | 109.1 |
I3iv—Pb1—I3v | 176.76 (3) | H1A—N1—H1B | 107.8 |
I3i—Pb1—I3v | 87.39 (4) | C2—N2—C2iv | 117.7 (17) |
N2—Pb2—N1 | 68.4 (3) | C2—N2—Pb2 | 112.4 (9) |
N1iv—Pb2—N1 | 136.3 (5) | C2—N2—H2 | 104.2 |
N2—Pb2—I2ii | 81.5 (4) | Pb2—N2—H2 | 104.2 |
N1—Pb2—I2ii | 89.9 (3) | C1—C2—N2 | 114.1 (12) |
N2—Pb2—I1 | 87.8 (4) | C1—C2—H2C | 108.7 |
N1—Pb2—I1 | 86.1 (3) | N2—C2—H2C | 108.7 |
I2ii—Pb2—I1 | 169.26 (4) | C1—C2—H2D | 108.7 |
I3iii—Pb2—N1 | 73.9 (3) | N2—C2—H2D | 108.7 |
I1—Pb2—I3iii | 104.85 (3) | H2C—C2—H2D | 107.6 |
I3iii—Pb2—N2 | 139.17 (15) | C2—C1—N1 | 115.4 (13) |
I3iii—Pb2—I3vi | 75.64 (2) | C2—C1—H1C | 108.4 |
I2vii—Pb2—I3iii | 83.54 (3) | N1—C1—H1C | 108.4 |
I3vi—Pb2—N1 | 149.3 (3) | C2—C1—H1D | 108.4 |
I3vi—Pb2—N1iv | 73.8 (3) | N1—C1—H1D | 108.4 |
Pb1—I3—Pb2viii | 125.02 (3) | H1C—C1—H1D | 107.5 |
C1—N1—N2—C2 | 25.1 (14) |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1/2, y, −z+3/2; (iii) −x+1/2, −y, z+1/2; (iv) x, −y+1/2, z; (v) −x+1, −y, −z+1; (vi) −x+1/2, y+1/2, z+1/2; (vii) x−1/2, −y+1/2, −z+3/2; (viii) −x+1/2, −y, z−1/2; (ix) −x+1, y−1/2, −z+1; (x) x+1/2, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···I1iii | 0.90 | 2.93 | 3.791 (12) | 160 |
N1—H1B···I2v | 0.90 | 2.88 | 3.746 (12) | 163 |
N2—H2···I2ii | 0.91 | 3.19 | 3.731 (17) | 121 |
Symmetry codes: (ii) x−1/2, y, −z+3/2; (iii) −x+1/2, −y, z+1/2; (v) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Pb2I4(C4H13N3)] |
Mr | 1025.15 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 293 |
a, b, c (Å) | 17.034 (6), 9.218 (3), 11.092 (4) |
V (Å3) | 1741.6 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 26.38 |
Crystal size (mm) | 0.2 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.095, 0.268 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2906, 1998, 1202 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.099, 1.00 |
No. of reflections | 1998 |
No. of parameters | 67 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.57, −1.58 |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···I1i | 0.90 | 2.93 | 3.791 (12) | 160.0 |
N1—H1B···I2ii | 0.90 | 2.88 | 3.746 (12) | 163.4 |
N2—H2···I2iii | 0.91 | 3.19 | 3.731 (17) | 120.5 |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1, −y, −z+1; (iii) x−1/2, y, −z+3/2. |
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Krautscheild, K., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104.. Google Scholar
Lode, C. & Krautscheild, H. (2001). Z. Anorg. Allg. Chem. 627 1454–1458. CrossRef CAS Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Papavassiliou, G. C., Mousdis, G. A., Raptopoulou, C. P. & Terzis, A. Z. (1999). Z. Naturforsch. Teil B, 54, 1405–1409. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297–5302. CSD CrossRef CAS Web of Science Google Scholar
Zhu, X. H., Mercier, N., Allain, M., Frère, P., Blanchard, P., Roncali, J. & Riou, A. (2004). J. Solid State Chem. 177, 1067–1071. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The basic structure building block of this compound is made up of lead iodide octahedral [PbI6] and a mixed lead organic-inorganic PbI4(C4N3H13) coordination polyhedron (Fig 1). Both Pb atoms , two I atoms and one N atom lie on a mirror plane. Atom Pb1 is located in the octahedral cavity of the inorganic chains while Pb2 is responsible of the connectivity between organic moiety and inorganic chains. To our knowledge, this is the first report of an organic-inorganic hybrid exhibiting this kind of lead connectivity.
A part of the inorganic back bone is staked as single chains of edge sharing Pb1I6 octahedra, as shown in Fig 2. The halide atoms I3 are responsible for the edge sharing between Pb1I6 neighboring octahedron to join infinite one dimensional chain (parallel to b axis). Within the octahedra the bond lengths around Pb1 range from 3.182 (2) to 3.319 (2) Å which indicate the dominant ionic character of the Pb—I bonds in the inorganic chains. The bond angles I—Pb1—I deviate slightly from ideal octahedral value of 90° and 180°, ranging from 88.39 (4)° to 92.98 (5)° for the adjacent iodides and from 176.76 (3)° to 179.59 (4)° for the opposite ones. This ideal octahedron indicates the unstereochemical activity of lead (II) lone pair electrons (Wang et al. 1995). Note that the regular octahedrons are a characteristic feature often encountered in the low dimensional lead iodide structures (Zhu et al., 2004).
As mentioned above, C4N3H13 is in combination with inorganic moiety by three Pb2—N non covalent interaction and hydrogen bonds. The non centrosymmetric organic molecule is slightly twisted around the C—C bond as reflected by a torsion angle of 25.1 (14)°. Bond distances and angles appear to be within normal range.
It is note worthy that the yellow color observed for the title compound is in good accordance with a low dimensional network of lead octahedral (Lode et al., 2001; Krautscheild et al., 2001; Papavassiliou et al., 1999).