metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The one-dimensional organic inorganic hybrid compound poly[(di­ethyl­ene­tri­amine)tetra-μ-iodido-dilead(II)]

aLaboratoire de Physique appliquée (LPA), Faculté des Sciences de Sfax, 3018, BP 802, Tunisia, bLaboratoire de Matériaux et Cristallochimie, Institut préparatoire aux études ingénieur de Nabeul, 8000 Mrezga, Nabeul, Tunisia, and cLaboratoire de Cristallochimie et des Matériaux, Faculté des Sciences de Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn

(Received 24 April 2008; accepted 9 May 2008; online 13 June 2008)

A new organic–inorganic hybrid, [Pb2I4(C4H13N3)]n, was obtained by the reaction of C4N3H10 and PbI2 at room temperature. The structure is a three-dimensional polymer resulting from the association of PbI6 octa­hedra and a mixed lead organic–inorganic PbI4(C4N3H13) coordination polyhedron. Both Pb atoms, two I atoms and one N atom lie on a mirror plane. N—H⋯I hydrogen bonds further connect the organic unit and some I atoms.

Related literature

For related literature, see: Lode & Krautscheild (2001[Lode, C. & Krautscheild, H. (2001). Z. Anorg. Allg. Chem. 627 1454-1458.]); Krautscheild et al. (2001[Krautscheild, K., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099-1104..]); Papavassiliou et al. (1999[Papavassiliou, G. C., Mousdis, G. A., Raptopoulou, C. P. & Terzis, A. Z. (1999). Z. Naturforsch. Teil B, 54, 1405-1409.]); Wang et al. (1995[Wang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297-5302.]); Zhu et al. (2004[Zhu, X. H., Mercier, N., Allain, M., Frère, P., Blanchard, P., Roncali, J. & Riou, A. (2004). J. Solid State Chem. 177, 1067-1071.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2I4(C4H13N3)]

  • Mr = 1025.15

  • Orthorhombic, P n m a

  • a = 17.034 (6) Å

  • b = 9.218 (3) Å

  • c = 11.092 (4) Å

  • V = 1741.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 26.38 mm−1

  • T = 293 (2) K

  • 0.2 × 0.05 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.095, Tmax = 0.268

  • 2906 measured reflections

  • 1998 independent reflections

  • 1202 reflections with I > 2σ(I)

  • Rint = 0.045

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.00

  • 1998 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 1.57 e Å−3

  • Δρmin = −1.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I1i 0.90 2.93 3.791 (12) 160
N1—H1B⋯I2ii 0.90 2.88 3.746 (12) 163
N2—H2⋯I2iii 0.91 3.19 3.731 (17) 121
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The basic structure building block of this compound is made up of lead iodide octahedral [PbI6] and a mixed lead organic-inorganic PbI4(C4N3H13) coordination polyhedron (Fig 1). Both Pb atoms , two I atoms and one N atom lie on a mirror plane. Atom Pb1 is located in the octahedral cavity of the inorganic chains while Pb2 is responsible of the connectivity between organic moiety and inorganic chains. To our knowledge, this is the first report of an organic-inorganic hybrid exhibiting this kind of lead connectivity.

A part of the inorganic back bone is staked as single chains of edge sharing Pb1I6 octahedra, as shown in Fig 2. The halide atoms I3 are responsible for the edge sharing between Pb1I6 neighboring octahedron to join infinite one dimensional chain (parallel to b axis). Within the octahedra the bond lengths around Pb1 range from 3.182 (2) to 3.319 (2) Å which indicate the dominant ionic character of the Pb—I bonds in the inorganic chains. The bond angles I—Pb1—I deviate slightly from ideal octahedral value of 90° and 180°, ranging from 88.39 (4)° to 92.98 (5)° for the adjacent iodides and from 176.76 (3)° to 179.59 (4)° for the opposite ones. This ideal octahedron indicates the unstereochemical activity of lead (II) lone pair electrons (Wang et al. 1995). Note that the regular octahedrons are a characteristic feature often encountered in the low dimensional lead iodide structures (Zhu et al., 2004).

As mentioned above, C4N3H13 is in combination with inorganic moiety by three Pb2—N non covalent interaction and hydrogen bonds. The non centrosymmetric organic molecule is slightly twisted around the C—C bond as reflected by a torsion angle of 25.1 (14)°. Bond distances and angles appear to be within normal range.

It is note worthy that the yellow color observed for the title compound is in good accordance with a low dimensional network of lead octahedral (Lode et al., 2001; Krautscheild et al., 2001; Papavassiliou et al., 1999).

Related literature top

For related literature, see: Lode & Krautscheild (2001); Krautscheild et al. (2001); Papavassiliou et al. (1999); Wang et al. (1995); Zhu et al. (2004).

Experimental top

An aqueous solution of HI was added to the diethylentriamin to synthesis C4H13N3I3 salts. Under ambient conditions, stoechiometric amounts of C4H13N3I3 and PbI2 with excess HI (to improve PbI2 solubility), were sailed in DMF. The resulting solution was kept at room temperature. Yellow needle-like crystals are obtained five weeks later.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å (CH2) and N—H = 0.90Å (NH2) or 0.91Å (NH) 0.86 Å with Uiso(H) = 1.2Ueq (C or N).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of the C4N3H13Pb2I4 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i)x, 1/2 - y, z; (ii) 1 - x, 1/2 + y,1 - z; (iii) 1 - x, –Y, 1 - z; (iv) 1/2 - x, -y, 1/2 + z; (v) x - 1/2,1/2 - y, 3/2 - z; (vi) 1/2 - x, 1/2 + y, 1/2 + z
[Figure 2] Fig. 2. : Packing view of C4N3H13Pb2I4 viewed along [010] direction. H atoms have been omitted for clarity.
poly[(diethylenetriamine)tetra-µ-iodido-dilead(II)] top
Crystal data top
[Pb2I4(C4H13N3)]F(000) = 1736
Mr = 1025.15Dx = 3.910 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 17.034 (6) Åθ = 10.7–13.8°
b = 9.218 (3) ŵ = 26.38 mm1
c = 11.092 (4) ÅT = 293 K
V = 1741.6 (10) Å3Needle, yellow
Z = 40.2 × 0.05 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1202 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
Non–profiled ω/2θ scansh = 121
Absorption correction: ψ scan
(North et al., 1968)
k = 113
Tmin = 0.095, Tmax = 0.268l = 114
2906 measured reflections2 standard reflections every 120 min
1998 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
1998 reflections(Δ/σ)max < 0.001
67 parametersΔρmax = 1.57 e Å3
0 restraintsΔρmin = 1.58 e Å3
Crystal data top
[Pb2I4(C4H13N3)]V = 1741.6 (10) Å3
Mr = 1025.15Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 17.034 (6) ŵ = 26.38 mm1
b = 9.218 (3) ÅT = 293 K
c = 11.092 (4) Å0.2 × 0.05 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1202 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.095, Tmax = 0.2682 standard reflections every 120 min
2906 measured reflections intensity decay: 5%
1998 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 1.57 e Å3
1998 reflectionsΔρmin = 1.58 e Å3
67 parameters
Special details top

Experimental. Number of psi-scan sets used was 4 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied (North et al.,1968).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.49490 (3)0.25000.49379 (7)0.0376 (2)
Pb20.23035 (4)0.25000.86880 (7)0.0361 (2)
I10.32678 (7)0.25000.61874 (12)0.0482 (4)
I20.66724 (7)0.25000.36339 (11)0.0441 (3)
I30.43945 (5)0.00127 (10)0.31479 (9)0.0458 (3)
N10.2835 (7)0.0102 (10)0.8986 (11)0.049 (3)
H1A0.24690.06390.93650.059*
H1B0.29220.05060.82600.059*
N20.3598 (9)0.25000.9763 (17)0.055 (5)
H20.34670.25001.05580.066*
C20.4032 (8)0.113 (2)0.9595 (18)0.079 (6)
H2C0.42810.11430.88070.094*
H2D0.44450.10751.01950.094*
C10.3559 (10)0.0133 (16)0.9684 (18)0.076 (6)
H1C0.34260.02821.05250.091*
H1D0.38670.09610.94250.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0375 (4)0.0355 (4)0.0399 (4)0.0000.0008 (3)0.000
Pb20.0285 (3)0.0402 (4)0.0397 (4)0.0000.0006 (3)0.000
I10.0465 (7)0.0557 (8)0.0425 (8)0.0000.0098 (7)0.000
I20.0429 (7)0.0507 (8)0.0388 (7)0.0000.0023 (6)0.000
I30.0484 (5)0.0472 (6)0.0419 (5)0.0063 (4)0.0028 (4)0.0008 (5)
N10.060 (7)0.025 (6)0.062 (9)0.006 (5)0.010 (6)0.001 (6)
N20.043 (8)0.062 (12)0.059 (12)0.0000.015 (9)0.000
C20.048 (9)0.084 (14)0.103 (16)0.013 (10)0.007 (10)0.011 (13)
C10.088 (12)0.043 (10)0.096 (16)0.017 (9)0.023 (12)0.001 (11)
Geometric parameters (Å, º) top
Pb1—I13.1816 (17)N1—H1A0.9000
Pb1—I33.1936 (13)N1—H1B0.9000
Pb1—I23.2725 (16)N2—C21.476 (18)
Pb1—I3i3.3190 (13)N2—H20.9100
Pb2—N22.506 (15)C2—C11.42 (2)
Pb2—N12.585 (10)C2—H2C0.9700
Pb2—I2ii3.1591 (18)C2—H2D0.9700
Pb2—I13.2236 (17)C1—H1C0.9700
Pb2—I3iii3.7392 (17)C1—H1D0.9700
N1—C11.457 (19)
I1—Pb1—I390.26 (3)Pb1ix—I3—Pb2viii74.61 (2)
I3—Pb1—I3iv92.98 (5)Pb1—I1—Pb2146.46 (5)
I1—Pb1—I2179.59 (4)Pb2x—I2—Pb183.66 (4)
I3—Pb1—I289.46 (3)Pb1—I3—Pb1ix90.21 (4)
I1—Pb1—I3i91.41 (3)C1—N1—Pb2112.5 (8)
I3—Pb1—I3i176.76 (3)C1—N1—H1A109.1
I3iv—Pb1—I3i89.79 (4)Pb2—N1—H1A109.1
I2—Pb1—I3i88.88 (3)C1—N1—H1B109.1
I3—Pb1—I3v89.79 (4)Pb2—N1—H1B109.1
I3iv—Pb1—I3v176.76 (3)H1A—N1—H1B107.8
I3i—Pb1—I3v87.39 (4)C2—N2—C2iv117.7 (17)
N2—Pb2—N168.4 (3)C2—N2—Pb2112.4 (9)
N1iv—Pb2—N1136.3 (5)C2—N2—H2104.2
N2—Pb2—I2ii81.5 (4)Pb2—N2—H2104.2
N1—Pb2—I2ii89.9 (3)C1—C2—N2114.1 (12)
N2—Pb2—I187.8 (4)C1—C2—H2C108.7
N1—Pb2—I186.1 (3)N2—C2—H2C108.7
I2ii—Pb2—I1169.26 (4)C1—C2—H2D108.7
I3iii—Pb2—N173.9 (3)N2—C2—H2D108.7
I1—Pb2—I3iii104.85 (3)H2C—C2—H2D107.6
I3iii—Pb2—N2139.17 (15)C2—C1—N1115.4 (13)
I3iii—Pb2—I3vi75.64 (2)C2—C1—H1C108.4
I2vii—Pb2—I3iii83.54 (3)N1—C1—H1C108.4
I3vi—Pb2—N1149.3 (3)C2—C1—H1D108.4
I3vi—Pb2—N1iv73.8 (3)N1—C1—H1D108.4
Pb1—I3—Pb2viii125.02 (3)H1C—C1—H1D107.5
C1—N1—N2—C225.1 (14)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (iv) x, y+1/2, z; (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+3/2; (viii) x+1/2, y, z1/2; (ix) x+1, y1/2, z+1; (x) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I1iii0.902.933.791 (12)160
N1—H1B···I2v0.902.883.746 (12)163
N2—H2···I2ii0.913.193.731 (17)121
Symmetry codes: (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Pb2I4(C4H13N3)]
Mr1025.15
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)17.034 (6), 9.218 (3), 11.092 (4)
V3)1741.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)26.38
Crystal size (mm)0.2 × 0.05 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.095, 0.268
No. of measured, independent and
observed [I > 2σ(I)] reflections
2906, 1998, 1202
Rint0.045
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.00
No. of reflections1998
No. of parameters67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.57, 1.58

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I1i0.902.933.791 (12)160.0
N1—H1B···I2ii0.902.883.746 (12)163.4
N2—H2···I2iii0.913.193.731 (17)120.5
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z+1; (iii) x1/2, y, z+3/2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKrautscheild, K., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104..  Google Scholar
First citationLode, C. & Krautscheild, H. (2001). Z. Anorg. Allg. Chem. 627 1454–1458.  CrossRef CAS Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPapavassiliou, G. C., Mousdis, G. A., Raptopoulou, C. P. & Terzis, A. Z. (1999). Z. Naturforsch. Teil B, 54, 1405–1409.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297–5302.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhu, X. H., Mercier, N., Allain, M., Frère, P., Blanchard, P., Roncali, J. & Riou, A. (2004). J. Solid State Chem. 177, 1067–1071.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds