metal-organic compounds
Dibromidobis(4-hydroxy-1,5-dimethyl-2-phenyl-3-pyrazolone)zinc(II)
aLaboratoire de Cristallographie et RMN biologiques, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France, and bUniversité de Paris XI, Faculté des Sciences Pharmaceutiques et Biologiques, Laboratoire de Chimie Thérapeutique BioCIS, UPRES-A 8076 CNRS, 5 rue J. B. Clément, 92296 Châtenay-Malabry Cedex, France
*Correspondence e-mail: lemoine@pharmacie.univ-paris5.fr
In the title compound, [ZnBr2(C11H12N2O2)2], the Zn(II) ion is coordinated by two Br atoms and two O atoms from two 4-hydroxyantipyrine molecules via the carbonyl O atoms, which act as monodentate ligands, giving rise to a distorted tetrahedral geometry. The values of the bond angles at the Zn atom are in the range 99.4 (1) to 113.2 (1)°. The presence of O—H⋯O and O—H⋯Br intramolecular hydrogen bonds can explain the difference between the two Zn—O [1.961 (3)/2.015 (3) Å] and the two Zn—Br [2.350 (1)/2.378 (1) Å] bond lengths. The is governed by C—H⋯O, C—H⋯Br and Zn—Br⋯Cg(π-ring) interactions.
Related literature
For related literature, see: Bekaert et al. (2003, 2007); Filiz et al. (2008); Lemoine et al. (2007); Matzke et al. (2000); Melov et al., (1998); Panneerselvam et al. (1996); Tougu et al. (2008).
Experimental
Crystal data
|
Data collection
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808016838/dn2351sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016838/dn2351Isup2.hkl
The title compound, dibromido-bis[4-hydroxyantipyrine]zinc(II), was prepared by mixing 1.02 g (5 mmole) of 4-hydroxyantipyrine dissolved in hot acetic acid (10 ml, 353 K) and 10 ml of a solution of ZnBr2 (0.496 g, 2 mmole) in boiling acetic acid. Upon slow cooling, crystal suitable for X-ray diffraction were recovered.
All H atoms were positioned geometrically and treated as riding on their parent atoms with distances C—H = 0.96 Å (CH3) and Uiso(H) = 1.5 times Ueq(C) or 0.93 Å (aromatic) with Uiso(H) = 1.2 times Ueq(C) and O—H= 0.82Å with Uiso(H) = 1.5 times Ueq(O).
Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell
CAD-4 EXPRESS (Enraf Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 20087); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 for Windows (Farrugia, 1997).[ZnBr2(C11H12N2O2)2] | Dx = 1.670 Mg m−3 |
Mr = 633.64 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41 | Cell parameters from 25 reflections |
Hall symbol: P4w | θ = 2.2–7.0° |
a = 9.824 (3) Å | µ = 4.18 mm−1 |
c = 26.120 (3) Å | T = 293 K |
V = 2521 (1) Å3 | Parallelepiped, colourless |
Z = 4 | 0.18 × 0.16 × 0.15 mm |
F(000) = 1264 |
Enraf-Nonius CAD-4 diffractometer | Rint = 0.091 |
Radiation source: fine-focus sealed tube | θmax = 30.1°, θmin = 2.2° |
Graphite monochromator | h = −13→13 |
ω – 2θ scans | k = 0→13 |
15417 measured reflections | l = −36→36 |
7354 independent reflections | 3 standard reflections every 60 min |
3152 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0396P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max = 0.023 |
7354 reflections | Δρmax = 0.36 e Å−3 |
304 parameters | Δρmin = −0.30 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 3602 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.015 (9) |
[ZnBr2(C11H12N2O2)2] | Z = 4 |
Mr = 633.64 | Mo Kα radiation |
Tetragonal, P41 | µ = 4.18 mm−1 |
a = 9.824 (3) Å | T = 293 K |
c = 26.120 (3) Å | 0.18 × 0.16 × 0.15 mm |
V = 2521 (1) Å3 |
Enraf-Nonius CAD-4 diffractometer | Rint = 0.091 |
15417 measured reflections | 3 standard reflections every 60 min |
7354 independent reflections | intensity decay: none |
3152 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.093 | Δρmax = 0.36 e Å−3 |
S = 0.90 | Δρmin = −0.30 e Å−3 |
7354 reflections | Absolute structure: Flack (1983), 3602 Friedel pairs |
304 parameters | Absolute structure parameter: −0.015 (9) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.74076 (5) | 0.20414 (5) | 0.423054 (19) | 0.05571 (13) | |
Br1 | 0.88194 (6) | 0.16046 (6) | 0.35092 (2) | 0.07972 (17) | |
Br2 | 0.57242 (7) | 0.36720 (6) | 0.40493 (2) | 0.0908 (2) | |
C1 | 0.6782 (5) | 0.2246 (5) | 0.6042 (2) | 0.0645 (13) | |
N2 | 0.8063 (4) | 0.2622 (5) | 0.61659 (16) | 0.0699 (11) | |
N3 | 0.8827 (4) | 0.2682 (4) | 0.57175 (14) | 0.0579 (9) | |
O4 | 0.8439 (3) | 0.2507 (3) | 0.48491 (13) | 0.0627 (8) | |
C4 | 0.7980 (5) | 0.2417 (4) | 0.53136 (18) | 0.0531 (11) | |
O5 | 0.5526 (3) | 0.1862 (4) | 0.52624 (16) | 0.0774 (10) | |
H5 | 0.5683 | 0.1309 | 0.5035 | 0.116* | |
C5 | 0.6701 (4) | 0.2140 (4) | 0.5522 (2) | 0.0574 (12) | |
C6 | 0.5746 (6) | 0.1951 (7) | 0.6436 (2) | 0.097 (2) | |
H6A | 0.5993 | 0.1139 | 0.6618 | 0.146* | |
H6B | 0.4877 | 0.1824 | 0.6275 | 0.146* | |
H6C | 0.5694 | 0.2700 | 0.6672 | 0.146* | |
C7 | 0.8723 (6) | 0.2520 (7) | 0.6664 (2) | 0.0960 (18) | |
H7A | 0.8082 | 0.2746 | 0.6928 | 0.144* | |
H7B | 0.9477 | 0.3140 | 0.6677 | 0.144* | |
H7C | 0.9045 | 0.1607 | 0.6714 | 0.144* | |
C8 | 1.0114 (4) | 0.3326 (5) | 0.57024 (18) | 0.0565 (11) | |
C9 | 1.1196 (6) | 0.2603 (7) | 0.5512 (2) | 0.094 (2) | |
H9 | 1.1110 | 0.1706 | 0.5403 | 0.113* | |
C10 | 1.2471 (7) | 0.3318 (13) | 0.5490 (3) | 0.135 (4) | |
H10 | 1.3244 | 0.2882 | 0.5367 | 0.162* | |
C11 | 1.2545 (10) | 0.4602 (14) | 0.5647 (3) | 0.140 (4) | |
H11 | 1.3380 | 0.5045 | 0.5626 | 0.168* | |
C12 | 1.1441 (9) | 0.5314 (8) | 0.5840 (3) | 0.111 (3) | |
H12 | 1.1530 | 0.6205 | 0.5956 | 0.133* | |
C13 | 1.0223 (6) | 0.4661 (6) | 0.5853 (2) | 0.0779 (15) | |
H13 | 0.9453 | 0.5123 | 0.5966 | 0.093* | |
C21 | 0.8032 (5) | −0.2887 (4) | 0.4583 (2) | 0.0630 (12) | |
N22 | 0.6796 (4) | −0.3069 (4) | 0.47977 (18) | 0.0638 (11) | |
N23 | 0.6143 (4) | −0.1837 (4) | 0.47984 (16) | 0.0595 (10) | |
O24 | 0.6506 (3) | 0.0316 (3) | 0.44738 (13) | 0.0597 (8) | |
C24 | 0.6943 (4) | −0.0888 (4) | 0.45531 (17) | 0.0487 (10) | |
O25 | 0.9281 (3) | −0.1073 (3) | 0.41933 (19) | 0.0825 (10) | |
H25 | 0.9098 | −0.0349 | 0.4053 | 0.124* | |
C25 | 0.8144 (4) | −0.1576 (5) | 0.4424 (2) | 0.0602 (12) | |
C26 | 0.9040 (6) | −0.4025 (5) | 0.4535 (3) | 0.099 (2) | |
H26A | 0.9660 | −0.3830 | 0.4260 | 0.148* | |
H26B | 0.8568 | −0.4859 | 0.4465 | 0.148* | |
H26C | 0.9539 | −0.4112 | 0.4849 | 0.148* | |
C27 | 0.6348 (7) | −0.4141 (5) | 0.5139 (3) | 0.0872 (18) | |
H27A | 0.6787 | −0.4979 | 0.5047 | 0.131* | |
H27B | 0.5380 | −0.4247 | 0.5111 | 0.131* | |
H27C | 0.6581 | −0.3907 | 0.5485 | 0.131* | |
C28 | 0.4741 (5) | −0.1712 (4) | 0.49287 (19) | 0.0572 (12) | |
C29 | 0.4387 (6) | −0.1184 (6) | 0.5390 (3) | 0.0860 (18) | |
H29 | 0.5048 | −0.0915 | 0.5624 | 0.103* | |
C30 | 0.3006 (9) | −0.1055 (7) | 0.5503 (3) | 0.110 (3) | |
H30 | 0.2737 | −0.0673 | 0.5813 | 0.132* | |
C31 | 0.2057 (7) | −0.1483 (7) | 0.5167 (4) | 0.107 (3) | |
H31 | 0.1142 | −0.1402 | 0.5253 | 0.128* | |
C32 | 0.2391 (6) | −0.2030 (8) | 0.4702 (3) | 0.108 (2) | |
H32 | 0.1727 | −0.2318 | 0.4472 | 0.129* | |
C33 | 0.3770 (6) | −0.2138 (6) | 0.4589 (3) | 0.0827 (16) | |
H33 | 0.4037 | −0.2506 | 0.4277 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0566 (3) | 0.0519 (3) | 0.0587 (3) | −0.0067 (2) | −0.0048 (2) | 0.0016 (2) |
Br1 | 0.0845 (4) | 0.0840 (4) | 0.0706 (4) | 0.0026 (3) | 0.0170 (3) | 0.0095 (3) |
Br2 | 0.0966 (4) | 0.0866 (4) | 0.0893 (5) | 0.0281 (3) | −0.0168 (3) | −0.0011 (3) |
C1 | 0.064 (3) | 0.062 (3) | 0.068 (4) | −0.011 (2) | 0.008 (3) | −0.009 (2) |
N2 | 0.077 (3) | 0.077 (3) | 0.056 (3) | −0.012 (2) | 0.012 (2) | −0.005 (2) |
N3 | 0.053 (2) | 0.073 (2) | 0.048 (3) | −0.0083 (17) | 0.0001 (18) | 0.0005 (18) |
O4 | 0.0571 (18) | 0.073 (2) | 0.058 (2) | −0.0122 (15) | 0.0017 (15) | −0.0002 (16) |
C4 | 0.063 (3) | 0.043 (2) | 0.053 (3) | 0.0022 (19) | 0.001 (2) | 0.000 (2) |
O5 | 0.0492 (19) | 0.093 (3) | 0.090 (3) | −0.0133 (17) | 0.0043 (18) | −0.013 (2) |
C5 | 0.041 (3) | 0.051 (3) | 0.080 (4) | −0.0038 (19) | 0.008 (2) | −0.001 (2) |
C6 | 0.088 (4) | 0.109 (4) | 0.095 (5) | −0.034 (3) | 0.034 (4) | −0.013 (4) |
C7 | 0.101 (4) | 0.138 (5) | 0.049 (4) | −0.019 (4) | 0.007 (3) | 0.002 (3) |
C8 | 0.055 (3) | 0.062 (3) | 0.052 (3) | −0.002 (2) | −0.001 (2) | 0.001 (2) |
C9 | 0.067 (4) | 0.136 (6) | 0.078 (4) | 0.027 (4) | −0.004 (3) | −0.034 (4) |
C10 | 0.058 (4) | 0.255 (11) | 0.092 (6) | 0.006 (5) | 0.010 (3) | −0.048 (7) |
C11 | 0.113 (7) | 0.249 (12) | 0.057 (5) | −0.082 (8) | 0.006 (4) | 0.001 (6) |
C12 | 0.142 (7) | 0.107 (5) | 0.084 (5) | −0.064 (5) | 0.000 (5) | 0.000 (4) |
C13 | 0.091 (4) | 0.072 (3) | 0.071 (4) | −0.023 (3) | −0.002 (3) | 0.001 (3) |
C21 | 0.055 (3) | 0.050 (3) | 0.084 (4) | 0.003 (2) | −0.003 (3) | 0.003 (2) |
N22 | 0.064 (3) | 0.041 (2) | 0.086 (3) | 0.0001 (18) | 0.010 (2) | 0.0034 (19) |
N23 | 0.062 (2) | 0.044 (2) | 0.072 (3) | −0.0030 (17) | 0.0102 (19) | −0.0017 (18) |
O24 | 0.0507 (16) | 0.0470 (16) | 0.081 (2) | −0.0025 (13) | 0.0073 (15) | −0.0007 (15) |
C24 | 0.048 (2) | 0.044 (2) | 0.053 (3) | −0.0052 (19) | −0.0045 (19) | −0.0060 (19) |
O25 | 0.0525 (17) | 0.073 (2) | 0.122 (3) | 0.0007 (15) | 0.021 (2) | 0.020 (2) |
C25 | 0.052 (3) | 0.059 (3) | 0.069 (3) | −0.001 (2) | −0.001 (2) | 0.001 (2) |
C26 | 0.086 (4) | 0.059 (3) | 0.150 (7) | 0.019 (3) | 0.024 (4) | 0.020 (4) |
C27 | 0.110 (5) | 0.055 (3) | 0.097 (5) | 0.001 (3) | 0.017 (4) | 0.009 (3) |
C28 | 0.058 (3) | 0.048 (2) | 0.066 (3) | −0.006 (2) | 0.014 (2) | 0.005 (2) |
C29 | 0.086 (4) | 0.083 (4) | 0.089 (5) | −0.010 (3) | 0.024 (3) | −0.017 (3) |
C30 | 0.119 (6) | 0.075 (4) | 0.136 (7) | 0.006 (4) | 0.066 (5) | −0.007 (4) |
C31 | 0.068 (4) | 0.083 (4) | 0.170 (9) | 0.002 (3) | 0.037 (5) | 0.023 (5) |
C32 | 0.069 (4) | 0.129 (6) | 0.125 (7) | −0.021 (4) | −0.006 (4) | 0.044 (5) |
C33 | 0.068 (3) | 0.093 (4) | 0.088 (5) | −0.017 (3) | 0.011 (3) | 0.002 (3) |
Zn1—O4 | 1.961 (3) | C12—H12 | 0.9300 |
Zn1—O24 | 2.015 (3) | C13—H13 | 0.9300 |
Zn1—Br2 | 2.3505 (10) | C21—N22 | 1.349 (6) |
Zn1—Br1 | 2.3786 (8) | C21—C25 | 1.357 (7) |
C1—N2 | 1.350 (6) | C21—C26 | 1.498 (7) |
C1—C5 | 1.365 (7) | N22—N23 | 1.370 (5) |
C1—C6 | 1.477 (7) | N22—C27 | 1.448 (7) |
N2—N3 | 1.392 (5) | N23—C24 | 1.378 (5) |
N2—C7 | 1.457 (7) | N23—C28 | 1.424 (6) |
N3—C4 | 1.369 (6) | O24—C24 | 1.275 (5) |
N3—C8 | 1.415 (6) | C24—C25 | 1.400 (6) |
O4—C4 | 1.297 (5) | O25—C25 | 1.363 (6) |
C4—C5 | 1.396 (7) | O25—H25 | 0.8200 |
O5—C5 | 1.366 (6) | C26—H26A | 0.9600 |
O5—H5 | 0.8200 | C26—H26B | 0.9600 |
C6—H6A | 0.9600 | C26—H26C | 0.9600 |
C6—H6B | 0.9600 | C27—H27A | 0.9600 |
C6—H6C | 0.9600 | C27—H27B | 0.9600 |
C7—H7A | 0.9600 | C27—H27C | 0.9600 |
C7—H7B | 0.9600 | C28—C29 | 1.356 (7) |
C7—H7C | 0.9600 | C28—C33 | 1.368 (8) |
C8—C9 | 1.372 (7) | C29—C30 | 1.395 (9) |
C8—C13 | 1.373 (7) | C29—H29 | 0.9300 |
C9—C10 | 1.437 (11) | C30—C31 | 1.349 (12) |
C9—H9 | 0.9300 | C30—H30 | 0.9300 |
C10—C11 | 1.328 (14) | C31—C32 | 1.368 (11) |
C10—H10 | 0.9300 | C31—H31 | 0.9300 |
C11—C12 | 1.386 (13) | C32—C33 | 1.390 (9) |
C11—H11 | 0.9300 | C32—H32 | 0.9300 |
C12—C13 | 1.358 (9) | C33—H33 | 0.9300 |
O4—Zn1—O24 | 99.41 (13) | C12—C13—C8 | 120.9 (6) |
O4—Zn1—Br2 | 111.74 (10) | C12—C13—H13 | 119.6 |
O24—Zn1—Br2 | 109.12 (8) | C8—C13—H13 | 119.6 |
O4—Zn1—Br1 | 113.16 (10) | N22—C21—C25 | 109.0 (4) |
O24—Zn1—Br1 | 110.75 (9) | N22—C21—C26 | 122.0 (4) |
Br2—Zn1—Br1 | 111.94 (3) | C25—C21—C26 | 129.0 (5) |
N2—C1—C5 | 108.3 (4) | C21—N22—N23 | 107.8 (3) |
N2—C1—C6 | 121.9 (5) | C21—N22—C27 | 128.8 (4) |
C5—C1—C6 | 129.7 (5) | N23—N22—C27 | 119.9 (4) |
C1—N2—N3 | 108.2 (4) | N22—N23—C24 | 109.2 (3) |
C1—N2—C7 | 127.6 (4) | N22—N23—C28 | 122.0 (4) |
N3—N2—C7 | 120.9 (4) | C24—N23—C28 | 127.2 (4) |
C4—N3—N2 | 108.2 (4) | C24—O24—Zn1 | 133.1 (3) |
C4—N3—C8 | 127.4 (4) | O24—C24—N23 | 120.7 (4) |
N2—N3—C8 | 121.6 (4) | O24—C24—C25 | 133.8 (4) |
C4—O4—Zn1 | 125.1 (3) | N23—C24—C25 | 105.4 (4) |
O4—C4—N3 | 119.8 (4) | C25—O25—H25 | 109.5 |
O4—C4—C5 | 133.7 (4) | C21—C25—O25 | 123.1 (4) |
N3—C4—C5 | 106.5 (4) | C21—C25—C24 | 108.5 (4) |
C5—O5—H5 | 109.5 | O25—C25—C24 | 128.4 (4) |
C1—C5—O5 | 123.9 (4) | C21—C26—H26A | 109.5 |
C1—C5—C4 | 108.7 (4) | C21—C26—H26B | 109.5 |
O5—C5—C4 | 127.3 (5) | H26A—C26—H26B | 109.5 |
C1—C6—H6A | 109.5 | C21—C26—H26C | 109.5 |
C1—C6—H6B | 109.5 | H26A—C26—H26C | 109.5 |
H6A—C6—H6B | 109.5 | H26B—C26—H26C | 109.5 |
C1—C6—H6C | 109.5 | N22—C27—H27A | 109.5 |
H6A—C6—H6C | 109.5 | N22—C27—H27B | 109.5 |
H6B—C6—H6C | 109.5 | H27A—C27—H27B | 109.5 |
N2—C7—H7A | 109.5 | N22—C27—H27C | 109.5 |
N2—C7—H7B | 109.5 | H27A—C27—H27C | 109.5 |
H7A—C7—H7B | 109.5 | H27B—C27—H27C | 109.5 |
N2—C7—H7C | 109.5 | C29—C28—C33 | 120.9 (5) |
H7A—C7—H7C | 109.5 | C29—C28—N23 | 119.6 (5) |
H7B—C7—H7C | 109.5 | C33—C28—N23 | 119.5 (4) |
C9—C8—C13 | 122.5 (5) | C28—C29—C30 | 118.2 (7) |
C9—C8—N3 | 118.1 (5) | C28—C29—H29 | 120.9 |
C13—C8—N3 | 119.2 (4) | C30—C29—H29 | 120.9 |
C8—C9—C10 | 115.8 (7) | C31—C30—C29 | 120.4 (7) |
C8—C9—H9 | 122.1 | C31—C30—H30 | 119.8 |
C10—C9—H9 | 122.1 | C29—C30—H30 | 119.8 |
C11—C10—C9 | 120.0 (7) | C30—C31—C32 | 122.4 (6) |
C11—C10—H10 | 120.0 | C30—C31—H31 | 118.8 |
C9—C10—H10 | 120.0 | C32—C31—H31 | 118.8 |
C10—C11—C12 | 123.3 (7) | C31—C32—C33 | 116.9 (7) |
C10—C11—H11 | 118.4 | C31—C32—H32 | 121.6 |
C12—C11—H11 | 118.4 | C33—C32—H32 | 121.6 |
C13—C12—C11 | 117.4 (7) | C28—C33—C32 | 121.2 (7) |
C13—C12—H12 | 121.3 | C28—C33—H33 | 119.4 |
C11—C12—H12 | 121.3 | C32—C33—H33 | 119.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O24 | 0.82 | 1.94 | 2.734 (5) | 164 |
O25—H25···Br1 | 0.82 | 2.40 | 3.212 (4) | 169 |
C10—H10···O5i | 0.93 | 2.47 | 3.378 (8) | 165 |
C27—H27C···Br2ii | 0.96 | 2.81 | 3.686 (7) | 151 |
Symmetry codes: (i) x+1, y, z; (ii) −y+1, x−1, z+1/4. |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C11H12N2O2)2] |
Mr | 633.64 |
Crystal system, space group | Tetragonal, P41 |
Temperature (K) | 293 |
a, c (Å) | 9.824 (3), 26.120 (3) |
V (Å3) | 2521 (1) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.18 |
Crystal size (mm) | 0.18 × 0.16 × 0.15 |
Data collection | |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15417, 7354, 3152 |
Rint | 0.091 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.093, 0.90 |
No. of reflections | 7354 |
No. of parameters | 304 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.30 |
Absolute structure | Flack (1983), 3602 Friedel pairs |
Absolute structure parameter | −0.015 (9) |
Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 20087), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O24 | 0.82 | 1.94 | 2.734 (5) | 163.9 |
O25—H25···Br1 | 0.82 | 2.40 | 3.212 (4) | 169.1 |
C10—H10···O5i | 0.93 | 2.47 | 3.378 (8) | 165.1 |
C27—H27C···Br2ii | 0.96 | 2.81 | 3.686 (7) | 151.4 |
Symmetry codes: (i) x+1, y, z; (ii) −y+1, x−1, z+1/4. |
Y—X(I)···Cg(J) | X···Cg | X-Perp | Gamma | Y—X···Cg | |
Zn1—Br1···Cg1i | 3.671 (2) | 3.646 | 6.76 | 132.21 (4) |
Symmetry code: (i) 1+y, 1-x, -1/4 + z. Cg1 is the centroid of atoms Cl/N2/N3/C4/C5. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2003). Acta Cryst. E59, m574–m575. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2007). Acta Cryst. E63, o3187–o3189. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Filiz, G., Price, K. A., Caragounis, A., Du, T., Crouch, P. J. & White, A. R. (2008). Eur. Biophys. J. 37, 315–321. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Lemoine, P., Viossat, B., Brion, J. D. & Bekaert, A. (2007). Acta Cryst. E63, m2844–m2845. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matzke, G. R., Frye, R. F., Early, J. J., Straka, R. J. & Carson, S. W. (2000). Pharmacotherapy, 20, 182–190. Web of Science CrossRef PubMed CAS Google Scholar
Melov, S., Schneider, J. A., Day, B. J., Hinerfeld, D., Coskun, P., Mirra, S. S., Crapo, J. D. & Wallace, D. (1998). Nat. Genet. 18, 159–163. Web of Science CrossRef CAS PubMed Google Scholar
Panneerselvam, K., Jayanthi, N., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 1257–1258. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tougu, V., Karafin, A. & Palumaa, P. (2008). J. Neurochem. 104, 1249–1259. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metals like Zn are expected to be involved in neurodegenerative diseases such as Alzheimer or Parkinson leading to neurofibrillary tangles degeneration and tau protein accumulation (Filiz et al.,2008; Tougu et al.,2008). These amyloi¨d plaques in the cortical brain are the sign of cerebral aging and associated with a neuronic a high level of metals. Much work (Melov et al., 1998) is now devoted to theses diseases since no real drug is available up to date. As researchers postulate that soft chelating drugs could interfere with free metal accumulation and neuronal collapsus, our idea was that phenazone (antipyrine), a well known antipyretic brain available drug, could become a soft chelating molecule upon hydroxylation in the 4-hydroxy derivative. For this reason and our knowledge in metal amide complexes, (Bekaert et al., 2007; Lemoine et al., 2007) we have prepared a new cristalline complex including Zn and 4-hydroxy-1,5-dimethyl-2-phenyl-3-pyrazolone (4-hydroxyantipyrine) which is of considerable interest as a antipyrine primary metabolite and which is the object of many biological studies the latter years, by example in the evaluation of the influence of diabete mellitus on antipyrine metabolism (Matzke et al., 2000). The hydroxyamide structure which is close to lactamide let us to test it as a metal pinch. Following our work concerning lactamide and zinc(II) complex (Bekaert et al., 2003), we now report a new zinc complex with 4-hydroxyantipyrine.
The title compound contains one monomeric tetrahedral zinc complex, [Zn(C22H24N4O4)Br2]. The Zn atom is surrounded by two monodentate 4-hydroxyantipyrine ligands via the carbonyl O atom O4 (or O24) in the sp2 lone-pair direction and two Br ligands (Fig. 1). The complex exhibits a distorted tetrahedral geometry around the zincII atom. The degree of deviation from an ideal tetrahedron is appreciable with the angles around Zn atom ranging from 99.4 (1) to 113.2 (1) °. The Zn—O and Zn—Br distances in the coordination polyhedron are 1.961 (3)/2.015 (3) Å and 2.351 (1)/2.379 (1)Å, respectively, in good agreement with those found in similar ZnIItetrahedral coordination (Bekaert et al., 2003). The difference between the two Zn—O (or the two Zn—Br) bond lengths can be explained by the presence of the O5—H5···O24 (or O25—H25···Br1) intramolecular hydrogen bond (Table 1) which causes the stretching of the Zn—O24 (or Zn—Br1) bond. Each hydroxyantipyrine ligand consists of a pyrazole P1 (Cl/N2—N3/C4—C5) [or P3 (C2l/N22—N23/C24—C25)] and a phenyl ring P2 (C8—C13) [or P4 (C28—C33)] which are planar with maximum deviation of 0.017 (3) Å for N2 (first ligand) and 0.021 (3) Å for N23 (second ligand). The dihedral angles are 65.2 (2)° between P1 and P2 and 81.6 (2)° for P3 and P4, these values are significantly different from those reported in 4-hydroxyantipyrine [42.5 (1)°] (Panneerselvam et al.,1996).
The crystal packing is governed by weak C—H···O and Zn—Br···Cg1( centroid of the P1 plane) interactions (Tables1 and 2).