metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m891-m892

Di­bromidobis­(4-hydr­­oxy-1,5-di­methyl-2-phenyl-3-pyrazolone)zinc(II)

aLaboratoire de Cristallographie et RMN biologiques, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France, and bUniversité de Paris XI, Faculté des Sciences Pharmaceutiques et Biologiques, Laboratoire de Chimie Thérapeutique BioCIS, UPRES-A 8076 CNRS, 5 rue J. B. Clément, 92296 Châtenay-Malabry Cedex, France
*Correspondence e-mail: lemoine@pharmacie.univ-paris5.fr

(Received 14 May 2008; accepted 3 June 2008; online 7 June 2008)

In the title compound, [ZnBr2(C11H12N2O2)2], the Zn(II) ion is coordinated by two Br atoms and two O atoms from two 4-hydroxy­anti­pyrine mol­ecules via the carbonyl O atoms, which act as monodentate ligands, giving rise to a distorted tetra­hedral geometry. The values of the bond angles at the Zn atom are in the range 99.4 (1) to 113.2 (1)°. The presence of O—H⋯O and O—H⋯Br intra­molecular hydrogen bonds can explain the difference between the two Zn—O [1.961 (3)/2.015 (3) Å] and the two Zn—Br [2.350 (1)/2.378 (1) Å] bond lengths. The crystal structure is governed by C—H⋯O, C—H⋯Br and Zn—Br⋯Cg(π-ring) inter­actions.

Related literature

For related literature, see: Bekaert et al. (2003[Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2003). Acta Cryst. E59, m574-m575.], 2007[Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2007). Acta Cryst. E63, o3187-o3189.]); Filiz et al. (2008[Filiz, G., Price, K. A., Caragounis, A., Du, T., Crouch, P. J. & White, A. R. (2008). Eur. Biophys. J. 37, 315-321. ]); Lemoine et al. (2007[Lemoine, P., Viossat, B., Brion, J. D. & Bekaert, A. (2007). Acta Cryst. E63, m2844-m2845.]); Matzke et al. (2000[Matzke, G. R., Frye, R. F., Early, J. J., Straka, R. J. & Carson, S. W. (2000). Pharmacotherapy, 20, 182-190.]); Melov et al., (1998[Melov, S., Schneider, J. A., Day, B. J., Hinerfeld, D., Coskun, P., Mirra, S. S., Crapo, J. D. & Wallace, D. (1998). Nat. Genet. 18, 159-163.]); Panneerselvam et al. (1996[Panneerselvam, K., Jayanthi, N., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 1257-1258.]); Tougu et al. (2008[Tougu, V., Karafin, A. & Palumaa, P. (2008). J. Neurochem. 104, 1249-1259.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C11H12N2O2)2]

  • Mr = 633.64

  • Tetragonal, P 41

  • a = 9.824 (3) Å

  • c = 26.120 (3) Å

  • V = 2521 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.18 mm−1

  • T = 293 (2) K

  • 0.17 × 0.16 × 0.15 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 15417 measured reflections

  • 7354 independent reflections

  • 3152 reflections with I > 2σ(I)

  • Rint = 0.091

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 0.90

  • 7354 reflections

  • 304 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3602 Friedel pairs

  • Flack parameter: −0.015 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O24 0.82 1.94 2.734 (5) 164
O25—H25⋯Br1 0.82 2.40 3.212 (4) 169
C10—H10⋯O5i 0.93 2.47 3.378 (8) 165
C27—H27C⋯Br2ii 0.96 2.81 3.686 (7) 151
Symmetry codes: (i) x+1, y, z; (ii) [-y+1, x-1, z+{\script{1\over 4}}].

Table 2
Zn—Br⋯Cg(π-ring) interaction

yX(I)⋯Cg(J) XCg X-Perp γ YXCg  
Zn1—Br1⋯Cg1i 3.671 (2) 3.646 6.76 132.21 (4)  
Symmetry code: (i) 1+y, 1-x, [-{\script{1\over 4}} + z]. Cg1 is the centroid of atoms Cl/N2/N3/C4/C5.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metals like Zn are expected to be involved in neurodegenerative diseases such as Alzheimer or Parkinson leading to neurofibrillary tangles degeneration and tau protein accumulation (Filiz et al.,2008; Tougu et al.,2008). These amyloi¨d plaques in the cortical brain are the sign of cerebral aging and associated with a neuronic a high level of metals. Much work (Melov et al., 1998) is now devoted to theses diseases since no real drug is available up to date. As researchers postulate that soft chelating drugs could interfere with free metal accumulation and neuronal collapsus, our idea was that phenazone (antipyrine), a well known antipyretic brain available drug, could become a soft chelating molecule upon hydroxylation in the 4-hydroxy derivative. For this reason and our knowledge in metal amide complexes, (Bekaert et al., 2007; Lemoine et al., 2007) we have prepared a new cristalline complex including Zn and 4-hydroxy-1,5-dimethyl-2-phenyl-3-pyrazolone (4-hydroxyantipyrine) which is of considerable interest as a antipyrine primary metabolite and which is the object of many biological studies the latter years, by example in the evaluation of the influence of diabete mellitus on antipyrine metabolism (Matzke et al., 2000). The hydroxyamide structure which is close to lactamide let us to test it as a metal pinch. Following our work concerning lactamide and zinc(II) complex (Bekaert et al., 2003), we now report a new zinc complex with 4-hydroxyantipyrine.

The title compound contains one monomeric tetrahedral zinc complex, [Zn(C22H24N4O4)Br2]. The Zn atom is surrounded by two monodentate 4-hydroxyantipyrine ligands via the carbonyl O atom O4 (or O24) in the sp2 lone-pair direction and two Br ligands (Fig. 1). The complex exhibits a distorted tetrahedral geometry around the zincII atom. The degree of deviation from an ideal tetrahedron is appreciable with the angles around Zn atom ranging from 99.4 (1) to 113.2 (1) °. The Zn—O and Zn—Br distances in the coordination polyhedron are 1.961 (3)/2.015 (3) Å and 2.351 (1)/2.379 (1)Å, respectively, in good agreement with those found in similar ZnIItetrahedral coordination (Bekaert et al., 2003). The difference between the two Zn—O (or the two Zn—Br) bond lengths can be explained by the presence of the O5—H5···O24 (or O25—H25···Br1) intramolecular hydrogen bond (Table 1) which causes the stretching of the Zn—O24 (or Zn—Br1) bond. Each hydroxyantipyrine ligand consists of a pyrazole P1 (Cl/N2—N3/C4—C5) [or P3 (C2l/N22—N23/C24—C25)] and a phenyl ring P2 (C8—C13) [or P4 (C28—C33)] which are planar with maximum deviation of 0.017 (3) Å for N2 (first ligand) and 0.021 (3) Å for N23 (second ligand). The dihedral angles are 65.2 (2)° between P1 and P2 and 81.6 (2)° for P3 and P4, these values are significantly different from those reported in 4-hydroxyantipyrine [42.5 (1)°] (Panneerselvam et al.,1996).

The crystal packing is governed by weak C—H···O and Zn—Br···Cg1( centroid of the P1 plane) interactions (Tables1 and 2).

Related literature top

For related literature, see: Bekaert et al. (2003, 2007); Filiz et al. (2008); Lemoine et al. (2007); Matzke et al. (2000); Melov et al., (1998); Panneerselvam et al. (1996); Tougu et al. (2008).

Experimental top

The title compound, dibromido-bis[4-hydroxyantipyrine]zinc(II), was prepared by mixing 1.02 g (5 mmole) of 4-hydroxyantipyrine dissolved in hot acetic acid (10 ml, 353 K) and 10 ml of a solution of ZnBr2 (0.496 g, 2 mmole) in boiling acetic acid. Upon slow cooling, crystal suitable for X-ray diffraction were recovered.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms with distances C—H = 0.96 Å (CH3) and Uiso(H) = 1.5 times Ueq(C) or 0.93 Å (aromatic) with Uiso(H) = 1.2 times Ueq(C) and O—H= 0.82Å with Uiso(H) = 1.5 times Ueq(O).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 20087); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 for Windows (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. Molecular view of the complex with the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.
Dibromidobis(4-hydroxy-1,5-dimethyl-2-phenyl-3-pyrazolone)zinc(II) top
Crystal data top
[ZnBr2(C11H12N2O2)2]Dx = 1.670 Mg m3
Mr = 633.64Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 25 reflections
Hall symbol: P4wθ = 2.2–7.0°
a = 9.824 (3) ŵ = 4.18 mm1
c = 26.120 (3) ÅT = 293 K
V = 2521 (1) Å3Parallelepiped, colourless
Z = 40.18 × 0.16 × 0.15 mm
F(000) = 1264
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.091
Radiation source: fine-focus sealed tubeθmax = 30.1°, θmin = 2.2°
Graphite monochromatorh = 1313
ω – 2θ scansk = 013
15417 measured reflectionsl = 3636
7354 independent reflections3 standard reflections every 60 min
3152 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.023
7354 reflectionsΔρmax = 0.36 e Å3
304 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 3602 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (9)
Crystal data top
[ZnBr2(C11H12N2O2)2]Z = 4
Mr = 633.64Mo Kα radiation
Tetragonal, P41µ = 4.18 mm1
a = 9.824 (3) ÅT = 293 K
c = 26.120 (3) Å0.18 × 0.16 × 0.15 mm
V = 2521 (1) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.091
15417 measured reflections3 standard reflections every 60 min
7354 independent reflections intensity decay: none
3152 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.36 e Å3
S = 0.90Δρmin = 0.30 e Å3
7354 reflectionsAbsolute structure: Flack (1983), 3602 Friedel pairs
304 parametersAbsolute structure parameter: 0.015 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.74076 (5)0.20414 (5)0.423054 (19)0.05571 (13)
Br10.88194 (6)0.16046 (6)0.35092 (2)0.07972 (17)
Br20.57242 (7)0.36720 (6)0.40493 (2)0.0908 (2)
C10.6782 (5)0.2246 (5)0.6042 (2)0.0645 (13)
N20.8063 (4)0.2622 (5)0.61659 (16)0.0699 (11)
N30.8827 (4)0.2682 (4)0.57175 (14)0.0579 (9)
O40.8439 (3)0.2507 (3)0.48491 (13)0.0627 (8)
C40.7980 (5)0.2417 (4)0.53136 (18)0.0531 (11)
O50.5526 (3)0.1862 (4)0.52624 (16)0.0774 (10)
H50.56830.13090.50350.116*
C50.6701 (4)0.2140 (4)0.5522 (2)0.0574 (12)
C60.5746 (6)0.1951 (7)0.6436 (2)0.097 (2)
H6A0.59930.11390.66180.146*
H6B0.48770.18240.62750.146*
H6C0.56940.27000.66720.146*
C70.8723 (6)0.2520 (7)0.6664 (2)0.0960 (18)
H7A0.80820.27460.69280.144*
H7B0.94770.31400.66770.144*
H7C0.90450.16070.67140.144*
C81.0114 (4)0.3326 (5)0.57024 (18)0.0565 (11)
C91.1196 (6)0.2603 (7)0.5512 (2)0.094 (2)
H91.11100.17060.54030.113*
C101.2471 (7)0.3318 (13)0.5490 (3)0.135 (4)
H101.32440.28820.53670.162*
C111.2545 (10)0.4602 (14)0.5647 (3)0.140 (4)
H111.33800.50450.56260.168*
C121.1441 (9)0.5314 (8)0.5840 (3)0.111 (3)
H121.15300.62050.59560.133*
C131.0223 (6)0.4661 (6)0.5853 (2)0.0779 (15)
H130.94530.51230.59660.093*
C210.8032 (5)0.2887 (4)0.4583 (2)0.0630 (12)
N220.6796 (4)0.3069 (4)0.47977 (18)0.0638 (11)
N230.6143 (4)0.1837 (4)0.47984 (16)0.0595 (10)
O240.6506 (3)0.0316 (3)0.44738 (13)0.0597 (8)
C240.6943 (4)0.0888 (4)0.45531 (17)0.0487 (10)
O250.9281 (3)0.1073 (3)0.41933 (19)0.0825 (10)
H250.90980.03490.40530.124*
C250.8144 (4)0.1576 (5)0.4424 (2)0.0602 (12)
C260.9040 (6)0.4025 (5)0.4535 (3)0.099 (2)
H26A0.96600.38300.42600.148*
H26B0.85680.48590.44650.148*
H26C0.95390.41120.48490.148*
C270.6348 (7)0.4141 (5)0.5139 (3)0.0872 (18)
H27A0.67870.49790.50470.131*
H27B0.53800.42470.51110.131*
H27C0.65810.39070.54850.131*
C280.4741 (5)0.1712 (4)0.49287 (19)0.0572 (12)
C290.4387 (6)0.1184 (6)0.5390 (3)0.0860 (18)
H290.50480.09150.56240.103*
C300.3006 (9)0.1055 (7)0.5503 (3)0.110 (3)
H300.27370.06730.58130.132*
C310.2057 (7)0.1483 (7)0.5167 (4)0.107 (3)
H310.11420.14020.52530.128*
C320.2391 (6)0.2030 (8)0.4702 (3)0.108 (2)
H320.17270.23180.44720.129*
C330.3770 (6)0.2138 (6)0.4589 (3)0.0827 (16)
H330.40370.25060.42770.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0566 (3)0.0519 (3)0.0587 (3)0.0067 (2)0.0048 (2)0.0016 (2)
Br10.0845 (4)0.0840 (4)0.0706 (4)0.0026 (3)0.0170 (3)0.0095 (3)
Br20.0966 (4)0.0866 (4)0.0893 (5)0.0281 (3)0.0168 (3)0.0011 (3)
C10.064 (3)0.062 (3)0.068 (4)0.011 (2)0.008 (3)0.009 (2)
N20.077 (3)0.077 (3)0.056 (3)0.012 (2)0.012 (2)0.005 (2)
N30.053 (2)0.073 (2)0.048 (3)0.0083 (17)0.0001 (18)0.0005 (18)
O40.0571 (18)0.073 (2)0.058 (2)0.0122 (15)0.0017 (15)0.0002 (16)
C40.063 (3)0.043 (2)0.053 (3)0.0022 (19)0.001 (2)0.000 (2)
O50.0492 (19)0.093 (3)0.090 (3)0.0133 (17)0.0043 (18)0.013 (2)
C50.041 (3)0.051 (3)0.080 (4)0.0038 (19)0.008 (2)0.001 (2)
C60.088 (4)0.109 (4)0.095 (5)0.034 (3)0.034 (4)0.013 (4)
C70.101 (4)0.138 (5)0.049 (4)0.019 (4)0.007 (3)0.002 (3)
C80.055 (3)0.062 (3)0.052 (3)0.002 (2)0.001 (2)0.001 (2)
C90.067 (4)0.136 (6)0.078 (4)0.027 (4)0.004 (3)0.034 (4)
C100.058 (4)0.255 (11)0.092 (6)0.006 (5)0.010 (3)0.048 (7)
C110.113 (7)0.249 (12)0.057 (5)0.082 (8)0.006 (4)0.001 (6)
C120.142 (7)0.107 (5)0.084 (5)0.064 (5)0.000 (5)0.000 (4)
C130.091 (4)0.072 (3)0.071 (4)0.023 (3)0.002 (3)0.001 (3)
C210.055 (3)0.050 (3)0.084 (4)0.003 (2)0.003 (3)0.003 (2)
N220.064 (3)0.041 (2)0.086 (3)0.0001 (18)0.010 (2)0.0034 (19)
N230.062 (2)0.044 (2)0.072 (3)0.0030 (17)0.0102 (19)0.0017 (18)
O240.0507 (16)0.0470 (16)0.081 (2)0.0025 (13)0.0073 (15)0.0007 (15)
C240.048 (2)0.044 (2)0.053 (3)0.0052 (19)0.0045 (19)0.0060 (19)
O250.0525 (17)0.073 (2)0.122 (3)0.0007 (15)0.021 (2)0.020 (2)
C250.052 (3)0.059 (3)0.069 (3)0.001 (2)0.001 (2)0.001 (2)
C260.086 (4)0.059 (3)0.150 (7)0.019 (3)0.024 (4)0.020 (4)
C270.110 (5)0.055 (3)0.097 (5)0.001 (3)0.017 (4)0.009 (3)
C280.058 (3)0.048 (2)0.066 (3)0.006 (2)0.014 (2)0.005 (2)
C290.086 (4)0.083 (4)0.089 (5)0.010 (3)0.024 (3)0.017 (3)
C300.119 (6)0.075 (4)0.136 (7)0.006 (4)0.066 (5)0.007 (4)
C310.068 (4)0.083 (4)0.170 (9)0.002 (3)0.037 (5)0.023 (5)
C320.069 (4)0.129 (6)0.125 (7)0.021 (4)0.006 (4)0.044 (5)
C330.068 (3)0.093 (4)0.088 (5)0.017 (3)0.011 (3)0.002 (3)
Geometric parameters (Å, º) top
Zn1—O41.961 (3)C12—H120.9300
Zn1—O242.015 (3)C13—H130.9300
Zn1—Br22.3505 (10)C21—N221.349 (6)
Zn1—Br12.3786 (8)C21—C251.357 (7)
C1—N21.350 (6)C21—C261.498 (7)
C1—C51.365 (7)N22—N231.370 (5)
C1—C61.477 (7)N22—C271.448 (7)
N2—N31.392 (5)N23—C241.378 (5)
N2—C71.457 (7)N23—C281.424 (6)
N3—C41.369 (6)O24—C241.275 (5)
N3—C81.415 (6)C24—C251.400 (6)
O4—C41.297 (5)O25—C251.363 (6)
C4—C51.396 (7)O25—H250.8200
O5—C51.366 (6)C26—H26A0.9600
O5—H50.8200C26—H26B0.9600
C6—H6A0.9600C26—H26C0.9600
C6—H6B0.9600C27—H27A0.9600
C6—H6C0.9600C27—H27B0.9600
C7—H7A0.9600C27—H27C0.9600
C7—H7B0.9600C28—C291.356 (7)
C7—H7C0.9600C28—C331.368 (8)
C8—C91.372 (7)C29—C301.395 (9)
C8—C131.373 (7)C29—H290.9300
C9—C101.437 (11)C30—C311.349 (12)
C9—H90.9300C30—H300.9300
C10—C111.328 (14)C31—C321.368 (11)
C10—H100.9300C31—H310.9300
C11—C121.386 (13)C32—C331.390 (9)
C11—H110.9300C32—H320.9300
C12—C131.358 (9)C33—H330.9300
O4—Zn1—O2499.41 (13)C12—C13—C8120.9 (6)
O4—Zn1—Br2111.74 (10)C12—C13—H13119.6
O24—Zn1—Br2109.12 (8)C8—C13—H13119.6
O4—Zn1—Br1113.16 (10)N22—C21—C25109.0 (4)
O24—Zn1—Br1110.75 (9)N22—C21—C26122.0 (4)
Br2—Zn1—Br1111.94 (3)C25—C21—C26129.0 (5)
N2—C1—C5108.3 (4)C21—N22—N23107.8 (3)
N2—C1—C6121.9 (5)C21—N22—C27128.8 (4)
C5—C1—C6129.7 (5)N23—N22—C27119.9 (4)
C1—N2—N3108.2 (4)N22—N23—C24109.2 (3)
C1—N2—C7127.6 (4)N22—N23—C28122.0 (4)
N3—N2—C7120.9 (4)C24—N23—C28127.2 (4)
C4—N3—N2108.2 (4)C24—O24—Zn1133.1 (3)
C4—N3—C8127.4 (4)O24—C24—N23120.7 (4)
N2—N3—C8121.6 (4)O24—C24—C25133.8 (4)
C4—O4—Zn1125.1 (3)N23—C24—C25105.4 (4)
O4—C4—N3119.8 (4)C25—O25—H25109.5
O4—C4—C5133.7 (4)C21—C25—O25123.1 (4)
N3—C4—C5106.5 (4)C21—C25—C24108.5 (4)
C5—O5—H5109.5O25—C25—C24128.4 (4)
C1—C5—O5123.9 (4)C21—C26—H26A109.5
C1—C5—C4108.7 (4)C21—C26—H26B109.5
O5—C5—C4127.3 (5)H26A—C26—H26B109.5
C1—C6—H6A109.5C21—C26—H26C109.5
C1—C6—H6B109.5H26A—C26—H26C109.5
H6A—C6—H6B109.5H26B—C26—H26C109.5
C1—C6—H6C109.5N22—C27—H27A109.5
H6A—C6—H6C109.5N22—C27—H27B109.5
H6B—C6—H6C109.5H27A—C27—H27B109.5
N2—C7—H7A109.5N22—C27—H27C109.5
N2—C7—H7B109.5H27A—C27—H27C109.5
H7A—C7—H7B109.5H27B—C27—H27C109.5
N2—C7—H7C109.5C29—C28—C33120.9 (5)
H7A—C7—H7C109.5C29—C28—N23119.6 (5)
H7B—C7—H7C109.5C33—C28—N23119.5 (4)
C9—C8—C13122.5 (5)C28—C29—C30118.2 (7)
C9—C8—N3118.1 (5)C28—C29—H29120.9
C13—C8—N3119.2 (4)C30—C29—H29120.9
C8—C9—C10115.8 (7)C31—C30—C29120.4 (7)
C8—C9—H9122.1C31—C30—H30119.8
C10—C9—H9122.1C29—C30—H30119.8
C11—C10—C9120.0 (7)C30—C31—C32122.4 (6)
C11—C10—H10120.0C30—C31—H31118.8
C9—C10—H10120.0C32—C31—H31118.8
C10—C11—C12123.3 (7)C31—C32—C33116.9 (7)
C10—C11—H11118.4C31—C32—H32121.6
C12—C11—H11118.4C33—C32—H32121.6
C13—C12—C11117.4 (7)C28—C33—C32121.2 (7)
C13—C12—H12121.3C28—C33—H33119.4
C11—C12—H12121.3C32—C33—H33119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O240.821.942.734 (5)164
O25—H25···Br10.822.403.212 (4)169
C10—H10···O5i0.932.473.378 (8)165
C27—H27C···Br2ii0.962.813.686 (7)151
Symmetry codes: (i) x+1, y, z; (ii) y+1, x1, z+1/4.

Experimental details

Crystal data
Chemical formula[ZnBr2(C11H12N2O2)2]
Mr633.64
Crystal system, space groupTetragonal, P41
Temperature (K)293
a, c (Å)9.824 (3), 26.120 (3)
V3)2521 (1)
Z4
Radiation typeMo Kα
µ (mm1)4.18
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15417, 7354, 3152
Rint0.091
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 0.90
No. of reflections7354
No. of parameters304
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.30
Absolute structureFlack (1983), 3602 Friedel pairs
Absolute structure parameter0.015 (9)

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 20087), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O240.821.942.734 (5)163.9
O25—H25···Br10.822.403.212 (4)169.1
C10—H10···O5i0.932.473.378 (8)165.1
C27—H27C···Br2ii0.962.813.686 (7)151.4
Symmetry codes: (i) x+1, y, z; (ii) y+1, x1, z+1/4.
Zn—Br···Cg(π-ring) interaction top
Y—X(I)···Cg(J)X···CgX-PerpGammaY—X···Cg
Zn1—Br1···Cg1i3.671 (2)3.6466.76132.21 (4)
Symmetry code: (i) 1+y, 1-x, -1/4 + z. Cg1 is the centroid of atoms Cl/N2/N3/C4/C5.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2003). Acta Cryst. E59, m574–m575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2007). Acta Cryst. E63, o3187–o3189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFiliz, G., Price, K. A., Caragounis, A., Du, T., Crouch, P. J. & White, A. R. (2008). Eur. Biophys. J. 37, 315–321.   Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLemoine, P., Viossat, B., Brion, J. D. & Bekaert, A. (2007). Acta Cryst. E63, m2844–m2845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatzke, G. R., Frye, R. F., Early, J. J., Straka, R. J. & Carson, S. W. (2000). Pharmacotherapy, 20, 182–190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelov, S., Schneider, J. A., Day, B. J., Hinerfeld, D., Coskun, P., Mirra, S. S., Crapo, J. D. & Wallace, D. (1998). Nat. Genet. 18, 159–163.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPanneerselvam, K., Jayanthi, N., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 1257–1258.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTougu, V., Karafin, A. & Palumaa, P. (2008). J. Neurochem. 104, 1249–1259.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m891-m892
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds