metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridonickel(II)]-μ-1,3-di-4-pyridylpropane]

aDepartment of Chemistry, ShangLuo University, ShangLuo, Shaanxi 726000, People's Republic of China
*Correspondence e-mail: slzhousc@126.com

(Received 19 June 2008; accepted 22 June 2008; online 28 June 2008)

The title compound, [NiCl2(C13H14N2)]n, is a one-dimensional polymer built up from alternating NiCl2 units and bridging 1,3-di-4-pyridylpropane ligands. The Ni atom has a distorted tetra­hedral coordination formed by the Cl atoms and two N atoms from two ligands. A mirror plane pases through the central methylene group of the propyl chain.

Related literature

For a closely related structure, see: Zhang & Yu (2007[Zhang, L. & Yu, J. (2007). Acta Cryst. E63, m1759.]). For related literature, see: Carlucci et al. (2002[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121-129.]); Hennigar et al. (1997[Hennigar, T. L., MacQuarrie, D. C., Losier, P., Gogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 972-973.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Dalbavie et al. (2002[Dalbavie, J. O., Regnouf-de-Vains, J. B., Lamartine, R., Perrin, R., Lecocq, L. & Fenet, B. (2002). Eur. J. Inorg. Chem. pp. 901-909.]); Ghosh et al. (2006[Ghosh, T., Maiya, B. G. & Samanta, A. (2006). Dalton Trans. pp. 795-802.]); Marshall & Grushin (2005[Marshall, W. J. & Grushin, V. V. (2005). Can. J. Chem. 83, 640-645.]); Masood et al. (1994[Masood, Md. A., Hodgson, D. J. & Zacharias, P. S. (1994). Inorg. Chim. Acta, 221, 99-103.]); McConnell & Nuttall (1978[McConnell, A. A. & Nuttall, R. H. (1978). J. Mol. Struct. 49, 207-213.]); Wu et al. (1999[Wu, H. P., Janiak, C., Rheinwald, G. & Lang, H. (1999). J. Chem. Soc. Dalton Trans. pp. 183-190.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C13H14N2)]

  • Mr = 327.87

  • Monoclinic, P 21 /m

  • a = 5.1928 (17) Å

  • b = 12.972 (4) Å

  • c = 10.492 (3) Å

  • β = 93.588 (6)°

  • V = 705.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 298 (2) K

  • 0.25 × 0.20 × 0.16 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.671, Tmax = 0.769

  • 3581 measured reflections

  • 1328 independent reflections

  • 763 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.067

  • S = 0.87

  • 1328 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent years have seen the evolution of a new class of coordination polymers known collectively as metal organic framework materials (Yaghi et al., 1998). The most common approach for producing coordination polymers and metal organic framework materials is through the self-assembly of metal centers with appropriate organic linker species to promote extended topologies (Hennigar et al., 1997). Conformationally flexibly ligands are typical building elements in the molecular interlocked/intertwined species. Some work on the self-assembly of coordination networks have been reported in the presence of 1,3-di-4-pyridylpropane (bpp) ligand (Carlucci et al., 2002). In this paper, we report here the synthesis and crystal structure of the title compound (I).

The Ni atom in the title complex has a distorted tetrahedral coordination formed by the chlorine atoms and two nitrogen from two separate bpp ligands (Fig. 1). The distances of Ni1—Cl and Ni1—Cl are 2.2533 (17) and 2.2382 (16)Å , respectively. Figure 1 show that this one-dimensional polymer built up from alternating (NiCl2) units and bridging 1,3-di-4-pyridylpropane ligands. Some other NiCl2 complexes with tetrahedral coordination geometries have been reported (Wu et al., 1999; Dalbavie et al., 2002; Masood et al., 1994; McConnell & Nuttall, 1978 ; Ghosh et al., 2006; Marshall & Grushin, 2005).

Related literature top

For a closely related structure, see: Zhang & Yu (2007). For related literature, see: Carlucci et al. (2002); Hennigar et al. (1997); Yaghi et al. (1998); Dalbavie et al. (2002); Ghosh et al. (2006); Marshall & Grushin (2005); Masood et al. (1994); McConnell & Nuttall (1978); Wu et al. (1999).

Experimental top

Bpp (0.21, 0.1 mmol), NiCl2 (0.22 g, 0.012 mmol), were added in a mixed solvent of methanol and acetonitrile, the mixture was heated for six hours under reflux. during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, a weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom labellinging scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
catena-Poly[[dichloridonickel(II)]-µ-1,3-di-4-pyridylpropane] top
Crystal data top
[NiCl2(C13H14N2)]F(000) = 336
Mr = 327.87Dx = 1.544 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1328 reflections
a = 5.1928 (17) Åθ = 2.5–25.2°
b = 12.972 (4) ŵ = 1.74 mm1
c = 10.492 (3) ÅT = 298 K
β = 93.588 (6)°Bloc, green
V = 705.3 (4) Å30.25 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker APEX area-detector
diffractometer
1328 independent reflections
Radiation source: fine-focus sealed tube763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.671, Tmax = 0.769k = 1315
3581 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.009P)2 + 0.821P]
where P = (Fo2 + 2Fc2)/3
1328 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[NiCl2(C13H14N2)]V = 705.3 (4) Å3
Mr = 327.87Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.1928 (17) ŵ = 1.74 mm1
b = 12.972 (4) ÅT = 298 K
c = 10.492 (3) Å0.25 × 0.20 × 0.16 mm
β = 93.588 (6)°
Data collection top
Bruker APEX area-detector
diffractometer
1328 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
763 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.769Rint = 0.046
3581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.87Δρmax = 0.44 e Å3
1328 reflectionsΔρmin = 0.44 e Å3
88 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.45214 (16)0.75000.22234 (6)0.0554 (3)
Cl10.7422 (3)0.75000.39091 (12)0.0566 (4)
Cl20.5444 (3)0.75000.01676 (12)0.0654 (5)
N10.2418 (6)0.6191 (2)0.2414 (3)0.0443 (8)
C10.2869 (7)0.5560 (3)0.3416 (3)0.0501 (10)
H10.42090.57190.40130.060*
C30.0579 (7)0.4430 (3)0.2738 (3)0.0445 (10)
C50.0501 (8)0.5930 (3)0.1581 (3)0.0555 (11)
H50.01710.63490.08710.067*
C40.1015 (8)0.5079 (3)0.1707 (3)0.0546 (11)
H40.23440.49390.10970.066*
C20.1436 (8)0.4690 (3)0.3594 (3)0.0521 (11)
H20.18270.42710.43000.063*
C70.0598 (10)0.25000.2643 (4)0.0462 (14)
H7A0.01750.25000.17550.055*
H7B0.10050.25000.31690.055*
C60.2131 (7)0.3473 (3)0.2915 (3)0.0521 (11)
H6A0.36770.34950.23470.063*
H6B0.26580.34480.37860.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0726 (7)0.0426 (4)0.0503 (4)0.0000.0005 (4)0.000
Cl10.0671 (12)0.0479 (8)0.0534 (8)0.0000.0083 (7)0.000
Cl20.0733 (13)0.0780 (10)0.0444 (8)0.0000.0006 (7)0.000
N10.052 (2)0.0332 (17)0.0466 (17)0.0034 (16)0.0023 (16)0.0024 (14)
C10.050 (3)0.047 (2)0.052 (2)0.003 (2)0.0080 (19)0.0003 (19)
C30.049 (3)0.030 (2)0.055 (2)0.006 (2)0.003 (2)0.0070 (17)
C50.070 (3)0.042 (2)0.053 (2)0.003 (2)0.009 (2)0.0027 (19)
C40.062 (3)0.047 (2)0.052 (2)0.001 (2)0.014 (2)0.0052 (19)
C20.066 (3)0.039 (2)0.050 (2)0.005 (2)0.007 (2)0.0072 (18)
C70.054 (4)0.034 (3)0.051 (3)0.0000.000 (3)0.000
C60.046 (3)0.043 (2)0.068 (3)0.001 (2)0.004 (2)0.0085 (19)
Geometric parameters (Å, º) top
Ni1—N12.036 (3)C5—C41.366 (5)
Ni1—N1i2.036 (3)C5—H50.9300
Ni1—Cl22.2384 (16)C4—H40.9300
Ni1—Cl12.2503 (16)C2—H20.9300
N1—C51.327 (4)C7—C6ii1.529 (4)
N1—C11.341 (4)C7—C61.529 (4)
C1—C21.372 (5)C7—H7A0.9700
C1—H10.9300C7—H7B0.9700
C3—C21.377 (5)C6—H6A0.9700
C3—C41.378 (4)C6—H6B0.9700
C3—C61.499 (5)
N1—Ni1—N1i113.06 (17)C5—C4—C3120.1 (4)
N1—Ni1—Cl2104.07 (8)C5—C4—H4119.9
N1i—Ni1—Cl2104.07 (8)C3—C4—H4119.9
N1—Ni1—Cl1105.05 (9)C1—C2—C3120.5 (3)
N1i—Ni1—Cl1105.05 (9)C1—C2—H2119.7
Cl2—Ni1—Cl1125.74 (7)C3—C2—H2119.7
C5—N1—C1116.6 (3)C6ii—C7—C6111.3 (4)
C5—N1—Ni1122.2 (2)C6ii—C7—H7A109.4
C1—N1—Ni1121.1 (3)C6—C7—H7A109.4
N1—C1—C2122.6 (3)C6ii—C7—H7B109.4
N1—C1—H1118.7C6—C7—H7B109.4
C2—C1—H1118.7H7A—C7—H7B108.0
C2—C3—C4116.3 (4)C3—C6—C7111.7 (3)
C2—C3—C6120.9 (3)C3—C6—H6A109.3
C4—C3—C6122.7 (4)C7—C6—H6A109.3
N1—C5—C4123.7 (3)C3—C6—H6B109.3
N1—C5—H5118.1C7—C6—H6B109.3
C4—C5—H5118.1H6A—C6—H6B107.9
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[NiCl2(C13H14N2)]
Mr327.87
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)5.1928 (17), 12.972 (4), 10.492 (3)
β (°) 93.588 (6)
V3)705.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.25 × 0.20 × 0.16
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.671, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
3581, 1328, 763
Rint0.046
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.067, 0.87
No. of reflections1328
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to ShangLuo University for financial support.

References

First citationBruker (1998). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationDalbavie, J. O., Regnouf-de-Vains, J. B., Lamartine, R., Perrin, R., Lecocq, L. & Fenet, B. (2002). Eur. J. Inorg. Chem. pp. 901–909.  CSD CrossRef Google Scholar
First citationGhosh, T., Maiya, B. G. & Samanta, A. (2006). Dalton Trans. pp. 795–802.  Web of Science CSD CrossRef Google Scholar
First citationHennigar, T. L., MacQuarrie, D. C., Losier, P., Gogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 972–973.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarshall, W. J. & Grushin, V. V. (2005). Can. J. Chem. 83, 640–645.  Web of Science CSD CrossRef CAS Google Scholar
First citationMasood, Md. A., Hodgson, D. J. & Zacharias, P. S. (1994). Inorg. Chim. Acta, 221, 99–103.  CSD CrossRef CAS Google Scholar
First citationMcConnell, A. A. & Nuttall, R. H. (1978). J. Mol. Struct. 49, 207–213.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H. P., Janiak, C., Rheinwald, G. & Lang, H. (1999). J. Chem. Soc. Dalton Trans. pp. 183–190.  Web of Science CSD CrossRef Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L. & Yu, J. (2007). Acta Cryst. E63, m1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds