metal-organic compounds
trans-Diazido(1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane)nickel(II)
aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr
In the centrosymmetric title compound, [Ni(N3)2(C22H34N6)], the NiII ion is coordinated by the four secondary N atoms of the macrocyclic ligand in a square-planar fashion with two N atoms of the azide ions in axial positions, resulting in a tetragonally distorted octahedron. An N—H⋯N hydrogen-bonding interaction between the secondary amine N atom of the macrocycle and an adjacent azide ion gives rise to a chain structure.
Related literature
For related literature, see: Hancock (1990); Jacquinot & Hauser (2003); Jung et al. (1989); Larionova et al. (2003); Min & Suh (2001); Liu et al. (2006); Tsuge et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808018199/er2057sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018199/er2057Isup2.hkl
The title compound is prepared as follows. To a DMF/H2O (v/v; 1:1, 20 ml) solution of [Ni(C22H34N6)Cl2] (0.20 g, 0.40 mmol) (Jung et al., 1989) was added dropwise an aqueous solution (10 ml) containing NaN3 (0.052 g, 0.80 mmol) at room temperature. The color of the solution turned from yellow to pale pink. The mixture solution was stirred for 1 h during which time a pink precipitate of formed which was collected by filtration, washed with methanol, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were obtained by layering of the aqueous solution of NaN3 on the DMF/H2O solution of [Ni(C22H34N6)Cl2] for several days.
All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(N3)2(C22H34N6)] | F(000) = 556 |
Mr = 525.32 | Dx = 1.431 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2820 reflections |
a = 10.2150 (5) Å | θ = 2.0–28.3° |
b = 15.8337 (9) Å | µ = 0.83 mm−1 |
c = 7.5477 (4) Å | T = 173 K |
β = 92.817 (1)° | Block, violet |
V = 1219.30 (11) Å3 | 0.50 × 0.20 × 0.20 mm |
Z = 2 |
Siemens SMART CCD diffractometer | 2820 independent reflections |
Radiation source: fine-focus sealed tube | 2456 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→11 |
Tmin = 0.733, Tmax = 0.847 | k = −17→20 |
7464 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0239P)2 + 1.3575P] where P = (Fo2 + 2Fc2)/3 |
2820 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Ni(N3)2(C22H34N6)] | V = 1219.30 (11) Å3 |
Mr = 525.32 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.2150 (5) Å | µ = 0.83 mm−1 |
b = 15.8337 (9) Å | T = 173 K |
c = 7.5477 (4) Å | 0.50 × 0.20 × 0.20 mm |
β = 92.817 (1)° |
Siemens SMART CCD diffractometer | 2820 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2456 reflections with I > 2σ(I) |
Tmin = 0.733, Tmax = 0.847 | Rint = 0.020 |
7464 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.19 | Δρmax = 0.42 e Å−3 |
2820 reflections | Δρmin = −0.29 e Å−3 |
160 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 1.0000 | 0.0000 | 0.01702 (11) | |
N1 | 0.37796 (18) | 0.89900 (12) | 0.0535 (2) | 0.0213 (4) | |
H1 | 0.3964 | 0.8821 | 0.1701 | 0.026* | |
N2 | 0.20050 (19) | 0.99153 (13) | 0.1463 (2) | 0.0243 (4) | |
N3 | 0.38842 (18) | 1.08789 (12) | 0.1271 (2) | 0.0204 (4) | |
H3 | 0.4085 | 1.0836 | 0.2483 | 0.024* | |
N4 | 0.6135 (2) | 0.97898 (13) | 0.2449 (2) | 0.0254 (4) | |
N5 | 0.57874 (18) | 0.93204 (12) | 0.3563 (2) | 0.0221 (4) | |
N6 | 0.5460 (2) | 0.88500 (14) | 0.4654 (3) | 0.0315 (5) | |
C1 | 0.4175 (2) | 0.83010 (15) | −0.0648 (3) | 0.0268 (5) | |
H1A | 0.3791 | 0.8395 | −0.1862 | 0.032* | |
H1B | 0.3852 | 0.7753 | −0.0213 | 0.032* | |
C2 | 0.2360 (2) | 0.92198 (15) | 0.0349 (3) | 0.0240 (5) | |
H2A | 0.2139 | 0.9369 | −0.0904 | 0.029* | |
H2B | 0.1831 | 0.8720 | 0.0644 | 0.029* | |
C3 | 0.2447 (2) | 1.07476 (15) | 0.0969 (3) | 0.0255 (5) | |
H3A | 0.1979 | 1.1175 | 0.1658 | 0.031* | |
H3B | 0.2208 | 1.0842 | −0.0303 | 0.031* | |
C4 | 0.4333 (2) | 1.17143 (15) | 0.0675 (3) | 0.0258 (5) | |
H4A | 0.4050 | 1.2159 | 0.1495 | 0.031* | |
H4B | 0.3948 | 1.1839 | −0.0526 | 0.031* | |
C5 | 0.2105 (2) | 0.97543 (16) | 0.3375 (3) | 0.0256 (5) | |
H5A | 0.1964 | 1.0291 | 0.4012 | 0.031* | |
H5B | 0.3002 | 0.9555 | 0.3709 | 0.031* | |
C6 | 0.1129 (2) | 0.91069 (15) | 0.3963 (3) | 0.0230 (5) | |
C7 | 0.1481 (3) | 0.85575 (17) | 0.5339 (3) | 0.0302 (5) | |
H7 | 0.2352 | 0.8566 | 0.5841 | 0.036* | |
C8 | 0.0580 (3) | 0.79974 (17) | 0.5991 (3) | 0.0359 (6) | |
H8 | 0.0830 | 0.7633 | 0.6948 | 0.043* | |
C9 | −0.0681 (3) | 0.79699 (16) | 0.5245 (3) | 0.0322 (6) | |
H9 | −0.1298 | 0.7582 | 0.5679 | 0.039* | |
C10 | −0.1042 (2) | 0.85094 (16) | 0.3866 (3) | 0.0288 (5) | |
H10 | −0.1910 | 0.8491 | 0.3352 | 0.035* | |
C11 | −0.0144 (2) | 0.90777 (15) | 0.3228 (3) | 0.0254 (5) | |
H11 | −0.0401 | 0.9448 | 0.2284 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0202 (2) | 0.01814 (19) | 0.01269 (18) | −0.00082 (17) | 0.00037 (13) | 0.00017 (16) |
N1 | 0.0243 (10) | 0.0257 (10) | 0.0140 (8) | −0.0017 (8) | 0.0009 (7) | −0.0004 (7) |
N2 | 0.0238 (9) | 0.0284 (11) | 0.0210 (9) | −0.0012 (8) | 0.0040 (7) | −0.0004 (8) |
N3 | 0.0245 (10) | 0.0224 (10) | 0.0144 (8) | −0.0005 (8) | 0.0011 (7) | 0.0005 (7) |
N4 | 0.0283 (10) | 0.0301 (11) | 0.0174 (9) | 0.0000 (8) | −0.0017 (8) | 0.0042 (8) |
N5 | 0.0216 (10) | 0.0257 (10) | 0.0187 (9) | 0.0035 (8) | −0.0029 (7) | −0.0055 (8) |
N6 | 0.0390 (12) | 0.0323 (12) | 0.0232 (10) | −0.0042 (10) | 0.0017 (9) | 0.0044 (9) |
C1 | 0.0291 (13) | 0.0229 (12) | 0.0287 (12) | −0.0041 (10) | 0.0040 (9) | −0.0039 (9) |
C2 | 0.0238 (11) | 0.0306 (13) | 0.0175 (10) | −0.0050 (10) | 0.0010 (8) | −0.0025 (9) |
C3 | 0.0245 (12) | 0.0289 (13) | 0.0230 (11) | 0.0022 (10) | 0.0005 (9) | 0.0011 (9) |
C4 | 0.0310 (13) | 0.0199 (11) | 0.0267 (12) | 0.0019 (10) | 0.0029 (9) | −0.0011 (9) |
C5 | 0.0249 (12) | 0.0330 (13) | 0.0190 (11) | −0.0031 (10) | 0.0019 (9) | −0.0041 (9) |
C6 | 0.0263 (12) | 0.0256 (12) | 0.0174 (10) | 0.0019 (10) | 0.0038 (8) | −0.0053 (9) |
C7 | 0.0308 (13) | 0.0342 (14) | 0.0249 (12) | 0.0026 (11) | −0.0037 (10) | 0.0015 (10) |
C8 | 0.0493 (16) | 0.0319 (14) | 0.0263 (13) | 0.0015 (12) | 0.0006 (11) | 0.0077 (10) |
C9 | 0.0386 (15) | 0.0278 (13) | 0.0312 (13) | −0.0065 (11) | 0.0124 (11) | −0.0010 (10) |
C10 | 0.0225 (12) | 0.0343 (14) | 0.0300 (12) | 0.0001 (10) | 0.0060 (9) | −0.0056 (10) |
C11 | 0.0238 (12) | 0.0283 (12) | 0.0243 (11) | 0.0053 (10) | 0.0033 (9) | 0.0008 (9) |
Ni1—N3 | 2.0650 (18) | C2—H2B | 0.9900 |
Ni1—N3i | 2.0650 (18) | C3—H3A | 0.9900 |
Ni1—N1 | 2.0795 (19) | C3—H3B | 0.9900 |
Ni1—N1i | 2.0795 (19) | C4—C1i | 1.526 (3) |
Ni1—N4i | 2.1592 (19) | C4—H4A | 0.9900 |
Ni1—N4 | 2.1592 (19) | C4—H4B | 0.9900 |
N1—C1 | 1.479 (3) | C5—C6 | 1.512 (3) |
N1—C2 | 1.495 (3) | C5—H5A | 0.9900 |
N1—H1 | 0.9300 | C5—H5B | 0.9900 |
N2—C2 | 1.443 (3) | C6—C7 | 1.389 (3) |
N2—C3 | 1.448 (3) | C6—C11 | 1.389 (3) |
N2—C5 | 1.464 (3) | C7—C8 | 1.385 (4) |
N3—C4 | 1.477 (3) | C7—H7 | 0.9500 |
N3—C3 | 1.489 (3) | C8—C9 | 1.381 (4) |
N3—H3 | 0.9300 | C8—H8 | 0.9500 |
N4—N5 | 1.189 (3) | C9—C10 | 1.383 (4) |
N5—N6 | 1.171 (3) | C9—H9 | 0.9500 |
C1—C4i | 1.526 (3) | C10—C11 | 1.388 (3) |
C1—H1A | 0.9900 | C10—H10 | 0.9500 |
C1—H1B | 0.9900 | C11—H11 | 0.9500 |
C2—H2A | 0.9900 | ||
N3—Ni1—N3i | 180.0 | N1—C2—H2A | 108.8 |
N3—Ni1—N1 | 94.48 (7) | N2—C2—H2B | 108.8 |
N3i—Ni1—N1 | 85.52 (7) | N1—C2—H2B | 108.8 |
N3—Ni1—N1i | 85.52 (7) | H2A—C2—H2B | 107.7 |
N3i—Ni1—N1i | 94.48 (7) | N2—C3—N3 | 113.92 (19) |
N1—Ni1—N1i | 180.0 | N2—C3—H3A | 108.8 |
N3—Ni1—N4i | 90.49 (7) | N3—C3—H3A | 108.8 |
N3i—Ni1—N4i | 89.51 (7) | N2—C3—H3B | 108.8 |
N1—Ni1—N4i | 89.03 (7) | N3—C3—H3B | 108.8 |
N1i—Ni1—N4i | 90.97 (7) | H3A—C3—H3B | 107.7 |
N3—Ni1—N4 | 89.51 (7) | N3—C4—C1i | 108.36 (19) |
N3i—Ni1—N4 | 90.49 (7) | N3—C4—H4A | 110.0 |
N1—Ni1—N4 | 90.97 (7) | C1i—C4—H4A | 110.0 |
N1i—Ni1—N4 | 89.03 (7) | N3—C4—H4B | 110.0 |
N4i—Ni1—N4 | 180.00 (10) | C1i—C4—H4B | 110.0 |
C1—N1—C2 | 114.54 (17) | H4A—C4—H4B | 108.4 |
C1—N1—Ni1 | 105.41 (13) | N2—C5—C6 | 113.11 (19) |
C2—N1—Ni1 | 112.49 (14) | N2—C5—H5A | 109.0 |
C1—N1—H1 | 108.1 | C6—C5—H5A | 109.0 |
C2—N1—H1 | 108.1 | N2—C5—H5B | 109.0 |
Ni1—N1—H1 | 108.1 | C6—C5—H5B | 109.0 |
C2—N2—C3 | 117.02 (18) | H5A—C5—H5B | 107.8 |
C2—N2—C5 | 115.73 (19) | C7—C6—C11 | 118.8 (2) |
C3—N2—C5 | 113.87 (19) | C7—C6—C5 | 119.6 (2) |
C4—N3—C3 | 113.36 (18) | C11—C6—C5 | 121.5 (2) |
C4—N3—Ni1 | 105.99 (13) | C8—C7—C6 | 121.0 (2) |
C3—N3—Ni1 | 113.40 (14) | C8—C7—H7 | 119.5 |
C4—N3—H3 | 108.0 | C6—C7—H7 | 119.5 |
C3—N3—H3 | 108.0 | C9—C8—C7 | 119.9 (2) |
Ni1—N3—H3 | 108.0 | C9—C8—H8 | 120.1 |
N5—N4—Ni1 | 122.34 (16) | C7—C8—H8 | 120.1 |
N6—N5—N4 | 179.0 (2) | C8—C9—C10 | 119.7 (2) |
N1—C1—C4i | 108.84 (19) | C8—C9—H9 | 120.1 |
N1—C1—H1A | 109.9 | C10—C9—H9 | 120.1 |
C4i—C1—H1A | 109.9 | C9—C10—C11 | 120.4 (2) |
N1—C1—H1B | 109.9 | C9—C10—H10 | 119.8 |
C4i—C1—H1B | 109.9 | C11—C10—H10 | 119.8 |
H1A—C1—H1B | 108.3 | C10—C11—C6 | 120.3 (2) |
N2—C2—N1 | 113.67 (18) | C10—C11—H11 | 119.9 |
N2—C2—H2A | 108.8 | C6—C11—H11 | 119.9 |
N3—Ni1—N1—C1 | 165.54 (14) | C3—N2—C2—N1 | 72.2 (3) |
N3i—Ni1—N1—C1 | −14.46 (14) | C5—N2—C2—N1 | −66.4 (2) |
N4i—Ni1—N1—C1 | 75.12 (14) | C1—N1—C2—N2 | −177.66 (18) |
N4—Ni1—N1—C1 | −104.88 (14) | Ni1—N1—C2—N2 | −57.3 (2) |
N3—Ni1—N1—C2 | 40.06 (14) | C2—N2—C3—N3 | −71.2 (3) |
N3i—Ni1—N1—C2 | −139.94 (14) | C5—N2—C3—N3 | 68.1 (2) |
N4i—Ni1—N1—C2 | −50.35 (14) | C4—N3—C3—N2 | 176.97 (18) |
N4—Ni1—N1—C2 | 129.65 (14) | Ni1—N3—C3—N2 | 56.1 (2) |
N1—Ni1—N3—C4 | −164.63 (14) | C3—N3—C4—C1i | −166.97 (18) |
N1i—Ni1—N3—C4 | 15.37 (14) | Ni1—N3—C4—C1i | −41.96 (19) |
N4i—Ni1—N3—C4 | −75.56 (14) | C2—N2—C5—C6 | −66.6 (3) |
N4—Ni1—N3—C4 | 104.44 (14) | C3—N2—C5—C6 | 153.5 (2) |
N1—Ni1—N3—C3 | −39.65 (15) | N2—C5—C6—C7 | 145.0 (2) |
N1i—Ni1—N3—C3 | 140.35 (15) | N2—C5—C6—C11 | −38.7 (3) |
N4i—Ni1—N3—C3 | 49.42 (15) | C11—C6—C7—C8 | −0.9 (4) |
N4—Ni1—N3—C3 | −130.58 (15) | C5—C6—C7—C8 | 175.5 (2) |
N3—Ni1—N4—N5 | 83.63 (19) | C6—C7—C8—C9 | 1.2 (4) |
N3i—Ni1—N4—N5 | −96.37 (19) | C7—C8—C9—C10 | −0.8 (4) |
N1—Ni1—N4—N5 | −10.84 (19) | C8—C9—C10—C11 | 0.0 (4) |
N1i—Ni1—N4—N5 | 169.16 (19) | C9—C10—C11—C6 | 0.3 (4) |
C2—N1—C1—C4i | 165.51 (18) | C7—C6—C11—C10 | 0.1 (3) |
Ni1—N1—C1—C4i | 41.3 (2) | C5—C6—C11—C10 | −176.2 (2) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N6ii | 0.93 | 2.24 | 3.145 (3) | 163 |
Symmetry code: (ii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(N3)2(C22H34N6)] |
Mr | 525.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 10.2150 (5), 15.8337 (9), 7.5477 (4) |
β (°) | 92.817 (1) |
V (Å3) | 1219.30 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.50 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.733, 0.847 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7464, 2820, 2456 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.092, 1.19 |
No. of reflections | 2820 |
No. of parameters | 160 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.29 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N6i | 0.93 | 2.24 | 3.145 (3) | 163 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Acknowledgements
This research was supported by Kyungpook National University Research Fund, 2007.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hancock, R. D. (1990). Acc. Chem. Res. 23, 253–257. CrossRef CAS Web of Science Google Scholar
Jacquinot, P. & Hauser, P. C. (2003). Electroanalysis, 15, 1437–1444. Web of Science CrossRef CAS Google Scholar
Jung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc. 10, 362–366. CAS Google Scholar
Larionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Cryst. Growth Des. 3, 267–272. Web of Science CSD CrossRef CAS Google Scholar
Liu, X.-T., Wang, X.-Y., Zhang, W.-X., Cui, P. & Gao, S. (2006). Adv. Mater. 18, 2852–2856. Web of Science CSD CrossRef CAS Google Scholar
Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303–313. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc. 126, 6564–6565. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination compounds with tetraaza macrocyclic ligands have been widely studied in the context of metalloenzymes and the construction of extended coordination polymers (Tsuge et al., 2004; Larionova et al., 2003). Especially, NiII macrocyclic complexes having vacant sites axially are good candidates for assembling novel multi-dimensional networks and catalysts for the reduction of carbon dioxide in which they can have unique properties (Min & Suh, 2001; Jacquinot et al., 2003). Furthermore, the azide ion is a bifunctional ligand which can link to transition metal complexes, thus allowing for the assembly of polymeric compounds (Liu et al., 2006). Therefore, complexes combined with azide ions can also be building blocks for extended network structured materials. Here, we report the synthesis and structure of NiII macrocyclic complex, trans-diazido(1,8-dibenzyl-1,3,6,8,10,13- hexaazacyclotetradecane)nickel(II), with two azide ions axially.
In the title compound, the coordination geometry around NiII ion is tetragonally elongated octahedron in which NiII ion is bonded to the four secondary amine N atoms of the macrocyclic ligand in the square-planar fashion and two N atoms from the azide ions at the axial sites as shown in Fig. 1. The average Ni—Neq and Ni—Nax bond distances are 2.072 (1) and 2.159 (1) Å, respectively. The axial Ni—N bond distance is longer than the equatorial Ni—N bond lengths, which can be attributed to the Jahn-Teller distortion of the NiII ion and/or the ring contraction of the macrocyclic ligand. Two N—N bond distances of the azide ion are not significant different even though one terminal nitrogen atom is coordinated to NiII ion, indicate that the azide ion is delocalized fully (N4—N5 = 1.189 (3) Å and N5—N6 = 1.171 (3) Å). The complex has an inversion center at the nickel atom and the azamacrocyclic ligand adopts thermodynamically the most stable R,R,S,S configuration (Hancock, 1990). All azide ions coordinating NiII ions axially are involved in hydrogen bonding interactions, which results to a rigid supramolecular one-dimensional chain propagating along the c axis (Fig. 2).