metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m909-m910

{2,2′-[(2,2-Di­methyl­propane-1,3-di­yl)bis­­(nitrilo­methyl­­idyne)]diphenolato}palladium(II) ethanol hemisolvate

aDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 April 2008; accepted 6 June 2008; online 13 June 2008)

The asymmetric unit of the title complex, [Pd(C19H20N2O2)]·0.5C2H5OH, contains two mol­ecules of a PdII complex of a Schiff base ligand with an N2O2 donor set and one ethanol mol­ecule. The PdII centers are in distorted square-planar geometries with the N2O2 donor atoms of the tetra­dentate Schiff base dianions. The ethanol mol­ecule takes part in an O—H⋯O hydrogen bond. In the crystal structure, mol­ecules are stacked approximately along the b-axis direction. The O atom and three H atoms of the solvent molecule are disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.

Related literature

For related structures, see, for example: Adrian et al. (2008[Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261-1266.]). For background to applications of palladium(II) complexes, see, for example: Abu-Surrah et al. (1999[Abu-Surrah, A. S., Thewalt, U. & Rieger, B. (1999). J. Organomet. Chem. 587, 58-66.]); Adrian et al. (2008[Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261-1266.]); Ayala et al. (2004[Ayala, V., Corma, A., Iglesias, M., Rincon, J. A. & Sanchez, F. (2004). J. Catal.. 224, 170-177.]); Caselli et al. (2005[Caselli, A., Gallo, E., Ragaini, F., Oppezzo, A. & Cenini, S. (2005). J. Organomet. Chem. 690, 2142-2148.]); Lai et al. (2005[Lai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron. 61, 9484-9489.]); Pou et al. (2007[Pou, D., Platero-Prats, A. E., Peŕez, S., Lo´pez, C., Solans, X., Font-Bardía, M., van Leeuwen, P. W. N. M., van Strijdonck, G. P. F. & Freixa, Z. (2007). J. Organomet. Chem. 692, 5017-5025.]); Ramírez et al. (2008[Ramírez, P., Contreras, R., Valderrama, M., Carmona, D., Lahoz, F. J. & Balana, A. I. (2008). J. Organomet. Chem. 693, 349-356.]); Roy et al. (2008[Roy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., Nethaji, M. & Kar, S. K. (2008). Polyhedron. 27, 593-601.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C19H20N2O2)]·0.5C2H6O

  • Mr = 437.83

  • Monoclinic, P 21 /c

  • a = 12.2453 (3) Å

  • b = 13.7334 (3) Å

  • c = 22.8442 (5) Å

  • β = 101.092 (1)°

  • V = 3769.94 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 296 (2) K

  • 0.38 × 0.33 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.690, Tmax = 0.804

  • 93296 measured reflections

  • 11002 independent reflections

  • 8985 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.130

  • S = 1.13

  • 11002 reflections

  • 474 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5A—H5AB⋯O1Ai 0.82 2.33 3.020 (13) 142
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In the field of coordination chemistry, the unique properties of Schiff bases as chelating ligands have attracted significant attention (Caselli et al., 2005; Pou et al., 2007; Ramírez et al., 2008; Roy et al., 2008). Their complexes with palladium(II) ions are found to be efficient catalysts in organic synthesis, especially in C—C bond formation (Abu-Surrah et al., 1999; Ayala et al., 2004; Lai et al., 2005). In the present paper, the preparation and crystal structure of the complex N,N'-bis-salicylidene-2,2-dimethylpropane-1,3-diamine palladium(II) is described.

The asymmetric unit of the title complex (Fig. 1) contains two molecules of the PdII complex (A and B) of the Schiff base ligand and one solvated ethanol molecule. The ethanol molecule shows disorder. The PdII ion in both A and B has a distorted square-planar environment in which the ligand is coordinated to the PdII ion as a tetradentate chelating ligand via the two phenolic oxygen atoms and two imine nitrogen atoms, yielding three six-membered rings. In A, two rings are essentially planar (Pd1A/N1A/C2A/C3A/C8A/O1A and Pd1A/N2A/C9A/C14A/C15A/O2A) and one adopts a half-chair conformation; Pd1A/N1A/C1A/C17A/C16A/N2A with atom C17A displaced from the Pd1A/N1A/C1A/C16A/N2A plane by 0.425 (4) Å and with Cremer & Pople (1975) puckering parameters: Q = 0.573 (4) Å, θ = 126.0 (3)° and ϕ = 11.1 (5)°. In B, one ring is essentially planar (Pd1B/N1B/C2B/C3B/C8B/O1B) and two rings have half-chair conformations; Pd1B/N1B/C1B/C17B/C16B/N2B with atom C17B displaced from the Pd1B/N1B/C1B/C16B/N2B plane by -0.443 (4) Å and with Cremer & Pople (1975) puckering parameters: Q = 0.618 (5) Å, θ = 115.8 (4)° and ϕ = 340.2 (5)°; Pd1B/N2B/C9B/C14B/C15B/O2B with atom O2B deviated from the Pd1B/N2B/C9B/C14B/C15B plane by -0.125 (4) Å and with Cremer & Pople (1975) puckering parameters: Q = 0.199 (5) Å, θ = 62.9 (14)° and ϕ = 24.4 (17)°. The PdII ions are coordinated in a cis-planar fashion by the two phenolic oxygen atoms and two imine nitrogen atoms. The Pd—O distances are in the range 1.979 (3)–2.008 (4) Å with Pd—N distances 1.981 (3)–2.014 (3) Å, which are typical of the square-planar PdII complexes of Schiff base ligands (Adrian et al., 2008). The bond angles around PdII ions indicate that the complex has a distorted square-planar geometry as indicated by the angles O—Pd—O in the range 79.66 (11)–80.54 (16)°, O—Pd—N in the range 92.14 (13)–92.95 (11)° and N—Pd—N in the range 94.92 (12)–94.95 (15)°, deviating substantially from that expected for a regular square-planar geometry. The distortion can be attributed to the restricted bite angle of the Schiff base ligand. Other bond lengths and angles observed in the structure are normal (Allen et al., 1987). The dihedral angles between the two phenolate rings [(C3–C8) and (C9–C14)] of the tetradentate Schiff base ligand are 8.3 (2)° in A and 18.5 (3)° in B.

In the crystal packing (Fig. 2), the neighbouring complex molecules are stacked approximately along the b direction by π···π interactions between the Pd1A/N1A/C2A/C3A/C8A/O1A and Pd1B/N1B/C2B/C3B/C8B/O1B rings with the Cg···Cg distance of 3.5724 (19) Å. The crystal is stabilized by O—H···O hydrogen bonds involving the solvated ethanol molecule (Table 1).

Related literature top

For related structures, see, for example: Adrian et al. (2008). For background to applications of palladium(II) complexes, see, for example: Abu-Surrah et al. (1999); Adrian et al. (2008); Ayala et al. (2004); Caselli et al. (2005); Lai et al. (2005); Pou et al. (2007); Ramírez et al. (2008); Roy et al. (2008). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title complex was synthesized by dissolving the N,N'-bis-salicylidene-2,2-dimethylpropane-1,3-diamine ligand (0.9313 g, 3 mmol) in dry ethanol (10 ml). Palladium(II) acetate (0.6735 g, 3 mmol) was then added to the resulting solution and refluxed under nitrogen atmosphere for 5 hr. An orange solid was obtained and washed with cold acetonitrile. Yellow single crystals suitable for X-ray structure determination were obtained by recrystallization from a mixture of chloroform/hexane (1:1 v/v) by slow evaporation of the solvent at room temperature over several weeks. Yield: 80%, M.p. 608.1–608.6 K.

Refinement top

All H atoms were placed in calculated positions with d(O—H) = 0.82 Å, Uiso=1.2Ueq, d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. A large peak on the difference electron density map indicated that the oxygen atom (O5) in the ethanol molecule was disordered. The occupancies of the two disorder components were refined to full convergence yielding a ratio of the major-to-minor components of 0.77 (2):0.23 (2).The highest residual electron density peak is located at 1.17 Å from H19D and the deepest hole is located at 0.76 Å from Pd1A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Disorder of the ethanol molecule is shown.
[Figure 2] Fig. 2. Crystal packing of (I), viewed along the a axis showing the stacking of the molecules along the b direction. The disordered ethanol molecule is omitted for clarity.
{2,2'-[(2,2-Dimethylpropane-1,3- diyl)bis(nitrilomethylidyne)]diphenolato}palladium(II) ethanol hemisolvate top
Crystal data top
[Pd(C19H20N2O2)]·0.5C2H6OF(000) = 1784
Mr = 437.83Dx = 1.543 Mg m3
Monoclinic, P21/cMelting point = 608.1–608.6 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.2453 (3) ÅCell parameters from 11002 reflections
b = 13.7334 (3) Åθ = 1.7–30.0°
c = 22.8442 (5) ŵ = 1.00 mm1
β = 101.092 (1)°T = 296 K
V = 3769.94 (15) Å3Block, yellow
Z = 80.38 × 0.33 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11002 independent reflections
Radiation source: fine-focus sealed tube8985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.7°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1819
Tmin = 0.690, Tmax = 0.804l = 3230
93296 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0432P)2 + 6.804P]
where P = (Fo2 + 2Fc2)/3
11002 reflections(Δ/σ)max = 0.001
474 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Pd(C19H20N2O2)]·0.5C2H6OV = 3769.94 (15) Å3
Mr = 437.83Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.2453 (3) ŵ = 1.00 mm1
b = 13.7334 (3) ÅT = 296 K
c = 22.8442 (5) Å0.38 × 0.33 × 0.23 mm
β = 101.092 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11002 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8985 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.804Rint = 0.039
93296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.13Δρmax = 0.81 e Å3
11002 reflectionsΔρmin = 0.66 e Å3
474 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd1A0.20617 (2)0.67812 (2)0.247364 (11)0.03888 (8)
O1A0.1533 (2)0.6938 (2)0.16026 (12)0.0555 (7)
O2A0.0603 (2)0.6083 (2)0.23691 (12)0.0530 (7)
N1A0.3445 (2)0.7573 (2)0.24716 (13)0.0404 (6)
N2A0.2422 (3)0.6491 (2)0.33484 (13)0.0419 (6)
C1A0.4329 (3)0.7719 (3)0.30025 (17)0.0516 (9)
H1A0.46940.83350.29600.062*
H1B0.48790.72090.30110.062*
C2A0.3643 (3)0.7980 (3)0.19958 (16)0.0441 (7)
H2A0.42850.83570.20470.053*
C3A0.3023 (3)0.7937 (3)0.14014 (16)0.0447 (8)
C4A0.3479 (4)0.8453 (4)0.09669 (19)0.0603 (11)
H4A0.41320.88080.10840.072*
C5A0.2975 (5)0.8435 (4)0.0380 (2)0.0778 (16)
H5A0.32670.87880.00990.093*
C6A0.2013 (5)0.7877 (4)0.0209 (2)0.0783 (16)
H6A0.16800.78450.01930.094*
C7A0.1551 (4)0.7376 (4)0.06169 (18)0.0626 (11)
H7A0.09090.70110.04890.075*
C8A0.2034 (3)0.7406 (3)0.12297 (16)0.0459 (8)
C9A0.0151 (3)0.5704 (3)0.27855 (18)0.0465 (8)
C10A0.0911 (4)0.5261 (3)0.2617 (2)0.0581 (10)
H10A0.12530.52460.22160.070*
C11A0.1441 (4)0.4854 (3)0.3035 (2)0.0651 (12)
H11A0.21330.45630.29130.078*
C12A0.0965 (4)0.4870 (4)0.3633 (2)0.0670 (12)
H12A0.13370.45950.39110.080*
C13A0.0048 (4)0.5287 (3)0.3815 (2)0.0574 (10)
H13A0.03620.53040.42190.069*
C14A0.0640 (3)0.5701 (3)0.33940 (17)0.0455 (8)
C15A0.1737 (3)0.6056 (3)0.36258 (16)0.0446 (8)
H15A0.19910.59590.40320.054*
C16A0.3527 (3)0.6716 (3)0.37029 (17)0.0500 (9)
H16A0.40540.62380.36120.060*
H16B0.34970.66520.41220.060*
C17A0.3951 (3)0.7722 (3)0.35969 (16)0.0449 (8)
C18A0.4980 (4)0.7901 (4)0.4079 (2)0.0659 (12)
H18A0.47700.79190.44630.099*
H18B0.53130.85110.40060.099*
H18C0.55060.73840.40720.099*
C19A0.3091 (4)0.8516 (3)0.3627 (2)0.0656 (12)
H19A0.28630.84870.40060.098*
H19B0.24560.84190.33130.098*
H19C0.34130.91420.35810.098*
C20A0.1426 (9)0.0756 (7)0.4083 (5)0.130 (3)
H20A0.17600.12730.38880.156*0.77 (2)
H20B0.13800.01750.38380.156*0.77 (2)
H20C0.09120.02200.40330.156*0.23 (2)
H20D0.19360.06130.38240.156*0.23 (2)
C21A0.2108 (10)0.0561 (9)0.4695 (4)0.170 (5)
H21A0.28480.03730.46590.256*
H21B0.17700.00450.48810.256*
H21C0.21410.11400.49330.256*
O5A0.0483 (10)0.1001 (10)0.4158 (6)0.166 (6)0.77 (2)
H5AB0.00850.11160.38340.249*0.77 (2)
O5B0.0875 (19)0.143 (2)0.3783 (14)0.104 (11)0.23 (2)
H5BA0.06420.12450.34410.157*0.23 (2)
Pd1B0.31413 (3)0.43936 (2)0.261629 (14)0.04845 (9)
O1B0.4597 (2)0.5063 (2)0.26439 (15)0.0637 (8)
O2B0.3781 (3)0.4244 (3)0.34754 (15)0.0747 (10)
N1B0.2659 (3)0.4668 (2)0.17540 (15)0.0490 (7)
N2B0.1765 (3)0.3646 (3)0.26900 (18)0.0598 (9)
C1B0.1535 (4)0.4404 (3)0.1444 (2)0.0632 (12)
H1C0.14890.44780.10180.076*
H1D0.10030.48500.15640.076*
C2B0.3247 (3)0.5142 (3)0.1439 (2)0.0537 (9)
H2B0.29240.52250.10390.064*
C3B0.4330 (3)0.5560 (3)0.1622 (2)0.0556 (10)
C4B0.4766 (5)0.6069 (4)0.1186 (3)0.0770 (14)
H4B0.43610.61000.07980.092*
C5B0.5785 (6)0.6522 (4)0.1326 (4)0.098 (2)
H5B0.60680.68680.10380.118*
C6B0.6377 (5)0.6453 (4)0.1902 (4)0.096 (2)
H6B0.70730.67460.19960.115*
C7B0.5982 (4)0.5973 (4)0.2341 (3)0.0790 (16)
H7B0.64020.59490.27260.095*
C8B0.4930 (3)0.5509 (3)0.2207 (2)0.0587 (11)
C9B0.3223 (6)0.4019 (4)0.3892 (2)0.0790 (17)
C10B0.3738 (7)0.4180 (5)0.4496 (3)0.104 (2)
H10B0.44540.44340.45870.125*
C11B0.3171 (11)0.3960 (7)0.4949 (4)0.145 (5)
H11B0.35190.40730.53420.174*
C12B0.2135 (11)0.3588 (8)0.4841 (5)0.150 (5)
H12B0.17690.34620.51540.180*
C13B0.1631 (8)0.3400 (5)0.4271 (3)0.116 (3)
H13B0.09250.31230.41980.139*
C14B0.2151 (6)0.3613 (4)0.3784 (3)0.0831 (18)
C15B0.1529 (5)0.3416 (3)0.3197 (3)0.0738 (15)
H15B0.08660.30760.31820.089*
C16B0.0904 (4)0.3331 (4)0.2181 (3)0.0781 (15)
H16C0.02530.37390.21690.094*
H16D0.06900.26700.22570.094*
C17B0.1214 (4)0.3358 (3)0.1574 (2)0.0567 (10)
C18B0.0165 (4)0.3119 (4)0.1106 (3)0.0839 (17)
H18D0.03300.31770.07130.126*
H18E0.04190.35660.11470.126*
H18F0.00700.24660.11660.126*
C19B0.2109 (4)0.2634 (3)0.1517 (2)0.0701 (13)
H19D0.27420.27370.18310.105*
H19E0.23260.27160.11380.105*
H19F0.18310.19860.15450.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd1A0.04093 (14)0.04101 (14)0.03494 (13)0.00268 (10)0.00789 (10)0.00081 (10)
O1A0.0576 (16)0.0694 (18)0.0376 (13)0.0165 (14)0.0042 (12)0.0055 (12)
O2A0.0497 (15)0.0664 (18)0.0427 (14)0.0157 (13)0.0082 (11)0.0014 (12)
N1A0.0385 (14)0.0450 (15)0.0377 (14)0.0013 (12)0.0070 (11)0.0010 (12)
N2A0.0483 (16)0.0395 (14)0.0373 (14)0.0001 (12)0.0069 (12)0.0009 (11)
C1A0.0415 (19)0.065 (2)0.046 (2)0.0075 (17)0.0035 (15)0.0051 (18)
C2A0.0438 (18)0.0477 (19)0.0418 (17)0.0027 (15)0.0106 (14)0.0004 (15)
C3A0.051 (2)0.0472 (19)0.0382 (17)0.0010 (16)0.0137 (15)0.0007 (14)
C4A0.067 (3)0.071 (3)0.046 (2)0.015 (2)0.0178 (19)0.0035 (19)
C5A0.095 (4)0.097 (4)0.045 (2)0.034 (3)0.021 (2)0.009 (2)
C6A0.100 (4)0.098 (4)0.035 (2)0.024 (3)0.008 (2)0.002 (2)
C7A0.072 (3)0.073 (3)0.041 (2)0.019 (2)0.0058 (19)0.0010 (19)
C8A0.051 (2)0.049 (2)0.0375 (17)0.0014 (16)0.0090 (15)0.0015 (15)
C9A0.047 (2)0.0385 (17)0.056 (2)0.0025 (15)0.0150 (16)0.0030 (15)
C10A0.051 (2)0.056 (2)0.068 (3)0.0066 (18)0.016 (2)0.001 (2)
C11A0.054 (2)0.058 (3)0.086 (3)0.010 (2)0.020 (2)0.009 (2)
C12A0.069 (3)0.061 (3)0.079 (3)0.010 (2)0.035 (3)0.012 (2)
C13A0.067 (3)0.052 (2)0.057 (2)0.005 (2)0.024 (2)0.0073 (18)
C14A0.051 (2)0.0357 (17)0.053 (2)0.0005 (15)0.0186 (16)0.0023 (15)
C15A0.060 (2)0.0359 (17)0.0392 (17)0.0020 (15)0.0132 (16)0.0006 (13)
C16A0.052 (2)0.054 (2)0.0409 (18)0.0038 (17)0.0004 (15)0.0084 (16)
C17A0.0469 (19)0.0467 (19)0.0393 (17)0.0044 (15)0.0038 (14)0.0029 (14)
C18A0.062 (3)0.081 (3)0.049 (2)0.018 (2)0.0036 (19)0.001 (2)
C19A0.069 (3)0.053 (2)0.076 (3)0.004 (2)0.014 (2)0.017 (2)
C20A0.149 (9)0.095 (6)0.161 (9)0.019 (6)0.066 (7)0.002 (6)
C21A0.214 (12)0.200 (12)0.090 (6)0.054 (10)0.012 (7)0.001 (6)
O5A0.127 (8)0.172 (10)0.199 (12)0.001 (7)0.032 (8)0.037 (9)
O5B0.068 (13)0.12 (2)0.113 (19)0.026 (12)0.005 (11)0.008 (14)
Pd1B0.04901 (17)0.04124 (15)0.05369 (17)0.00567 (12)0.00636 (12)0.00465 (12)
O1B0.0474 (16)0.0648 (19)0.073 (2)0.0018 (14)0.0043 (14)0.0102 (16)
O2B0.084 (2)0.079 (2)0.0561 (18)0.0227 (19)0.0020 (17)0.0023 (16)
N1B0.0443 (17)0.0384 (15)0.0600 (19)0.0051 (13)0.0005 (14)0.0031 (14)
N2B0.067 (2)0.0447 (18)0.073 (2)0.0027 (16)0.0266 (19)0.0007 (17)
C1B0.051 (2)0.055 (2)0.076 (3)0.0099 (19)0.008 (2)0.006 (2)
C2B0.052 (2)0.0412 (19)0.064 (2)0.0044 (16)0.0034 (18)0.0022 (17)
C3B0.048 (2)0.0376 (18)0.083 (3)0.0029 (16)0.016 (2)0.0081 (19)
C4B0.079 (3)0.055 (3)0.103 (4)0.010 (2)0.032 (3)0.003 (3)
C5B0.086 (4)0.066 (3)0.158 (7)0.017 (3)0.060 (5)0.002 (4)
C6B0.057 (3)0.072 (3)0.166 (7)0.022 (3)0.039 (4)0.027 (4)
C7B0.044 (2)0.069 (3)0.119 (5)0.008 (2)0.002 (3)0.029 (3)
C8B0.043 (2)0.043 (2)0.090 (3)0.0023 (16)0.011 (2)0.018 (2)
C9B0.123 (5)0.059 (3)0.055 (3)0.041 (3)0.016 (3)0.006 (2)
C10B0.157 (7)0.087 (4)0.063 (3)0.057 (4)0.010 (4)0.005 (3)
C11B0.262 (13)0.114 (7)0.060 (4)0.102 (9)0.032 (7)0.023 (4)
C12B0.241 (13)0.130 (8)0.098 (7)0.070 (9)0.083 (9)0.047 (6)
C13B0.173 (8)0.092 (5)0.099 (5)0.041 (5)0.069 (5)0.041 (4)
C14B0.122 (5)0.059 (3)0.077 (4)0.039 (3)0.043 (4)0.023 (3)
C15B0.092 (4)0.050 (2)0.091 (4)0.018 (2)0.046 (3)0.014 (2)
C16B0.062 (3)0.077 (3)0.098 (4)0.021 (3)0.021 (3)0.014 (3)
C17B0.047 (2)0.046 (2)0.076 (3)0.0097 (17)0.0090 (19)0.0062 (19)
C18B0.059 (3)0.066 (3)0.117 (5)0.022 (2)0.005 (3)0.006 (3)
C19B0.071 (3)0.053 (2)0.084 (3)0.002 (2)0.009 (3)0.017 (2)
Geometric parameters (Å, º) top
Pd1A—O1A1.982 (3)C21A—H21A0.9600
Pd1A—O2A2.001 (3)C21A—H21B0.9600
Pd1A—N2A2.002 (3)C21A—H21C0.9600
Pd1A—N1A2.014 (3)O5A—H20C1.2516
O1A—C8A1.310 (4)O5A—H5AB0.8200
O2A—C9A1.298 (4)O5B—H5BA0.8200
N1A—C2A1.286 (4)Pd1B—O2B1.979 (3)
N1A—C1A1.475 (5)Pd1B—N1B1.981 (3)
N2A—C15A1.292 (5)Pd1B—O1B1.995 (3)
N2A—C16A1.469 (5)Pd1B—N2B2.008 (4)
C1A—C17A1.516 (5)O1B—C8B1.302 (6)
C1A—H1A0.9700O2B—C9B1.312 (7)
C1A—H1B0.9700N1B—C2B1.288 (5)
C2A—C3A1.423 (5)N1B—C1B1.468 (5)
C2A—H2A0.9300N2B—C15B1.287 (6)
C3A—C8A1.405 (5)N2B—C16B1.476 (7)
C3A—C4A1.418 (5)C1B—C17B1.533 (6)
C4A—C5A1.364 (6)C1B—H1C0.9700
C4A—H4A0.9300C1B—H1D0.9700
C5A—C6A1.397 (7)C2B—C3B1.432 (6)
C5A—H5A0.9300C2B—H2B0.9300
C6A—C7A1.366 (6)C3B—C8B1.397 (7)
C6A—H6A0.9300C3B—C4B1.403 (7)
C7A—C8A1.412 (5)C4B—C5B1.376 (8)
C7A—H7A0.9300C4B—H4B0.9300
C9A—C14A1.404 (6)C5B—C6B1.379 (10)
C9A—C10A1.420 (6)C5B—H5B0.9300
C10A—C11A1.374 (6)C6B—C7B1.363 (9)
C10A—H10A0.9300C6B—H6B0.9300
C11A—C12A1.379 (7)C7B—C8B1.417 (6)
C11A—H11A0.9300C7B—H7B0.9300
C12A—C13A1.357 (7)C9B—C14B1.404 (9)
C12A—H12A0.9300C9B—C10B1.418 (8)
C13A—C14A1.429 (5)C10B—C11B1.387 (12)
C13A—H13A0.9300C10B—H10B0.9300
C14A—C15A1.431 (5)C11B—C12B1.346 (15)
C15A—H15A0.9300C11B—H11B0.9300
C16A—C17A1.513 (5)C12B—C13B1.354 (13)
C16A—H16A0.9700C12B—H12B0.9300
C16A—H16B0.9700C13B—C14B1.415 (8)
C17A—C18A1.526 (5)C13B—H13B0.9300
C17A—C19A1.526 (6)C14B—C15B1.434 (9)
C18A—H18A0.9600C15B—H15B0.9300
C18A—H18B0.9600C16B—C17B1.507 (7)
C18A—H18C0.9600C16B—H16C0.9700
C19A—H19A0.9600C16B—H16D0.9700
C19A—H19B0.9600C17B—C19B1.504 (6)
C19A—H19C0.9600C17B—C18B1.541 (6)
C20A—O5A1.246 (13)C18B—H18D0.9600
C20A—O5B1.27 (3)C18B—H18E0.9600
C20A—C21A1.508 (13)C18B—H18F0.9600
C20A—H20A0.9700C19B—H19D0.9600
C20A—H20B0.9700C19B—H19E0.9600
C20A—H20C0.9598C19B—H19F0.9600
C20A—H20D0.9599
O1A—Pd1A—O2A79.66 (11)O5B—C20A—H20D99.0
O1A—Pd1A—N2A172.05 (12)C21A—C20A—H20D103.0
O2A—Pd1A—N2A92.53 (12)H20A—C20A—H20D58.9
O1A—Pd1A—N1A92.95 (11)H20B—C20A—H20D56.5
O2A—Pd1A—N1A172.15 (11)H20C—C20A—H20D105.0
N2A—Pd1A—N1A94.92 (12)C20A—C21A—H21A109.5
C8A—O1A—Pd1A127.1 (2)C20A—C21A—H21B109.5
C9A—O2A—Pd1A127.0 (2)H21A—C21A—H21B109.5
C2A—N1A—C1A114.1 (3)C20A—C21A—H21C109.5
C2A—N1A—Pd1A122.1 (3)H21A—C21A—H21C109.5
C1A—N1A—Pd1A123.7 (2)H21B—C21A—H21C109.5
C15A—N2A—C16A116.3 (3)C20A—O5A—H20C45.2
C15A—N2A—Pd1A122.9 (3)C20A—O5A—H5AB109.5
C16A—N2A—Pd1A120.8 (2)H20C—O5A—H5AB99.3
N1A—C1A—C17A115.8 (3)C20A—O5B—H5BA109.5
N1A—C1A—H1A108.3O2B—Pd1B—N1B172.48 (15)
C17A—C1A—H1A108.3O2B—Pd1B—O1B80.54 (16)
N1A—C1A—H1B108.3N1B—Pd1B—O1B92.14 (13)
C17A—C1A—H1B108.3O2B—Pd1B—N2B92.43 (17)
H1A—C1A—H1B107.4N1B—Pd1B—N2B94.95 (15)
N1A—C2A—C3A129.5 (4)O1B—Pd1B—N2B172.66 (15)
N1A—C2A—H2A115.2C8B—O1B—Pd1B127.0 (3)
C3A—C2A—H2A115.2C9B—O2B—Pd1B125.6 (4)
C8A—C3A—C4A119.9 (4)C2B—N1B—C1B115.4 (4)
C8A—C3A—C2A124.1 (3)C2B—N1B—Pd1B124.1 (3)
C4A—C3A—C2A116.0 (4)C1B—N1B—Pd1B120.4 (3)
C5A—C4A—C3A121.0 (4)C15B—N2B—C16B112.7 (5)
C5A—C4A—H4A119.5C15B—N2B—Pd1B122.6 (4)
C3A—C4A—H4A119.5C16B—N2B—Pd1B124.6 (3)
C4A—C5A—C6A118.9 (4)N1B—C1B—C17B112.9 (4)
C4A—C5A—H5A120.6N1B—C1B—H1C109.0
C6A—C5A—H5A120.6C17B—C1B—H1C109.0
C7A—C6A—C5A121.6 (4)N1B—C1B—H1D109.0
C7A—C6A—H6A119.2C17B—C1B—H1D109.0
C5A—C6A—H6A119.2H1C—C1B—H1D107.8
C6A—C7A—C8A120.8 (4)N1B—C2B—C3B128.7 (4)
C6A—C7A—H7A119.6N1B—C2B—H2B115.6
C8A—C7A—H7A119.6C3B—C2B—H2B115.6
O1A—C8A—C3A124.1 (3)C8B—C3B—C4B120.1 (4)
O1A—C8A—C7A118.1 (4)C8B—C3B—C2B123.1 (4)
C3A—C8A—C7A117.8 (3)C4B—C3B—C2B116.7 (5)
O2A—C9A—C14A124.4 (3)C5B—C4B—C3B120.8 (6)
O2A—C9A—C10A118.0 (4)C5B—C4B—H4B119.6
C14A—C9A—C10A117.5 (4)C3B—C4B—H4B119.6
C11A—C10A—C9A121.1 (4)C4B—C5B—C6B118.5 (6)
C11A—C10A—H10A119.5C4B—C5B—H5B120.8
C9A—C10A—H10A119.5C6B—C5B—H5B120.8
C10A—C11A—C12A121.1 (4)C7B—C6B—C5B122.7 (5)
C10A—C11A—H11A119.4C7B—C6B—H6B118.7
C12A—C11A—H11A119.4C5B—C6B—H6B118.7
C13A—C12A—C11A119.8 (4)C6B—C7B—C8B119.7 (6)
C13A—C12A—H12A120.1C6B—C7B—H7B120.2
C11A—C12A—H12A120.1C8B—C7B—H7B120.2
C12A—C13A—C14A121.0 (4)O1B—C8B—C3B124.9 (4)
C12A—C13A—H13A119.5O1B—C8B—C7B116.9 (5)
C14A—C13A—H13A119.5C3B—C8B—C7B118.2 (5)
C9A—C14A—C13A119.5 (4)O2B—C9B—C14B124.4 (5)
C9A—C14A—C15A123.8 (3)O2B—C9B—C10B118.2 (7)
C13A—C14A—C15A116.6 (4)C14B—C9B—C10B117.4 (6)
N2A—C15A—C14A128.9 (3)C11B—C10B—C9B119.9 (9)
N2A—C15A—H15A115.5C11B—C10B—H10B120.0
C14A—C15A—H15A115.5C9B—C10B—H10B120.0
N2A—C16A—C17A114.3 (3)C12B—C11B—C10B122.4 (10)
N2A—C16A—H16A108.7C12B—C11B—H11B118.8
C17A—C16A—H16A108.7C10B—C11B—H11B118.8
N2A—C16A—H16B108.7C11B—C12B—C13B119.2 (9)
C17A—C16A—H16B108.7C11B—C12B—H12B120.4
H16A—C16A—H16B107.6C13B—C12B—H12B120.4
C16A—C17A—C1A108.3 (3)C12B—C13B—C14B121.8 (10)
C16A—C17A—C18A107.0 (3)C12B—C13B—H13B119.1
C1A—C17A—C18A107.1 (3)C14B—C13B—H13B119.1
C16A—C17A—C19A112.6 (4)C9B—C14B—C13B119.3 (7)
C1A—C17A—C19A112.0 (4)C9B—C14B—C15B123.4 (5)
C18A—C17A—C19A109.5 (4)C13B—C14B—C15B117.2 (7)
C17A—C18A—H18A109.5N2B—C15B—C14B128.6 (6)
C17A—C18A—H18B109.5N2B—C15B—H15B115.7
H18A—C18A—H18B109.5C14B—C15B—H15B115.7
C17A—C18A—H18C109.5N2B—C16B—C17B116.6 (4)
H18A—C18A—H18C109.5N2B—C16B—H16C108.1
H18B—C18A—H18C109.5C17B—C16B—H16C108.1
C17A—C19A—H19A109.5N2B—C16B—H16D108.1
C17A—C19A—H19B109.5C17B—C16B—H16D108.1
H19A—C19A—H19B109.5H16C—C16B—H16D107.3
C17A—C19A—H19C109.5C19B—C17B—C16B112.4 (4)
H19A—C19A—H19C109.5C19B—C17B—C1B112.6 (4)
H19B—C19A—H19C109.5C16B—C17B—C1B108.7 (4)
O5A—C20A—O5B57.8 (12)C19B—C17B—C18B108.8 (4)
O5A—C20A—C21A106.5 (11)C16B—C17B—C18B108.0 (4)
O5B—C20A—C21A140.6 (15)C1B—C17B—C18B106.0 (4)
O5A—C20A—H20A110.4C17B—C18B—H18D109.5
O5B—C20A—H20A56.1C17B—C18B—H18E109.5
C21A—C20A—H20A110.4H18D—C18B—H18E109.5
O5A—C20A—H20B110.4C17B—C18B—H18F109.5
O5B—C20A—H20B109.0H18D—C18B—H18F109.5
C21A—C20A—H20B110.4H18E—C18B—H18F109.5
H20A—C20A—H20B108.6C17B—C19B—H19D109.5
O5A—C20A—H20C67.7C17B—C19B—H19E109.5
O5B—C20A—H20C103.3H19D—C19B—H19E109.5
C21A—C20A—H20C102.0C17B—C19B—H19F109.5
H20A—C20A—H20C146.1H19D—C19B—H19F109.5
H20B—C20A—H20C48.5H19E—C19B—H19F109.5
O5A—C20A—H20D150.5
O2A—Pd1A—O1A—C8A178.3 (4)O2B—Pd1B—O1B—C8B176.0 (4)
N1A—Pd1A—O1A—C8A1.0 (3)N1B—Pd1B—O1B—C8B2.3 (3)
N2A—Pd1A—O2A—C9A5.3 (3)O1B—Pd1B—O2B—C9B163.4 (4)
O1A—Pd1A—O2A—C9A176.2 (3)N2B—Pd1B—O2B—C9B18.7 (4)
O1A—Pd1A—N1A—C2A2.5 (3)O1B—Pd1B—N1B—C2B0.9 (3)
N2A—Pd1A—N1A—C2A178.6 (3)N2B—Pd1B—N1B—C2B179.0 (3)
O1A—Pd1A—N1A—C1A175.8 (3)O1B—Pd1B—N1B—C1B175.4 (3)
N2A—Pd1A—N1A—C1A3.1 (3)N2B—Pd1B—N1B—C1B6.5 (3)
O2A—Pd1A—N2A—C15A4.4 (3)O2B—Pd1B—N2B—C15B10.8 (4)
N1A—Pd1A—N2A—C15A173.1 (3)N1B—Pd1B—N2B—C15B167.8 (4)
O2A—Pd1A—N2A—C16A171.8 (3)O2B—Pd1B—N2B—C16B171.4 (4)
N1A—Pd1A—N2A—C16A10.7 (3)N1B—Pd1B—N2B—C16B10.1 (4)
C2A—N1A—C1A—C17A150.9 (4)C2B—N1B—C1B—C17B136.8 (4)
Pd1A—N1A—C1A—C17A30.7 (5)Pd1B—N1B—C1B—C17B48.2 (5)
C1A—N1A—C2A—C3A175.3 (4)C1B—N1B—C2B—C3B175.0 (4)
Pd1A—N1A—C2A—C3A3.2 (6)Pd1B—N1B—C2B—C3B0.3 (6)
N1A—C2A—C3A—C8A0.3 (7)N1B—C2B—C3B—C8B0.4 (7)
N1A—C2A—C3A—C4A178.5 (4)N1B—C2B—C3B—C4B178.1 (4)
C8A—C3A—C4A—C5A0.5 (7)C8B—C3B—C4B—C5B0.1 (7)
C2A—C3A—C4A—C5A177.8 (5)C2B—C3B—C4B—C5B177.8 (5)
C3A—C4A—C5A—C6A1.7 (9)C3B—C4B—C5B—C6B1.0 (9)
C4A—C5A—C6A—C7A2.1 (10)C4B—C5B—C6B—C7B1.5 (10)
C5A—C6A—C7A—C8A0.1 (9)C5B—C6B—C7B—C8B0.9 (9)
Pd1A—O1A—C8A—C3A4.3 (6)Pd1B—O1B—C8B—C3B3.0 (6)
Pd1A—O1A—C8A—C7A175.8 (3)Pd1B—O1B—C8B—C7B177.1 (3)
C4A—C3A—C8A—O1A177.4 (4)C4B—C3B—C8B—O1B179.5 (4)
C2A—C3A—C8A—O1A4.4 (6)C2B—C3B—C8B—O1B1.8 (7)
C4A—C3A—C8A—C7A2.5 (6)C4B—C3B—C8B—C7B0.6 (6)
C2A—C3A—C8A—C7A175.7 (4)C2B—C3B—C8B—C7B178.3 (4)
C6A—C7A—C8A—O1A177.7 (5)C6B—C7B—C8B—O1B179.9 (5)
C6A—C7A—C8A—C3A2.2 (7)C6B—C7B—C8B—C3B0.2 (7)
Pd1A—O2A—C9A—C14A1.8 (6)Pd1B—O2B—C9B—C14B16.8 (7)
Pd1A—O2A—C9A—C10A178.3 (3)Pd1B—O2B—C9B—C10B164.2 (4)
O2A—C9A—C10A—C11A179.4 (4)O2B—C9B—C10B—C11B179.4 (6)
C14A—C9A—C10A—C11A0.6 (6)C14B—C9B—C10B—C11B1.5 (8)
C9A—C10A—C11A—C12A0.6 (7)C9B—C10B—C11B—C12B0.3 (13)
C10A—C11A—C12A—C13A0.5 (8)C10B—C11B—C12B—C13B1.5 (16)
C11A—C12A—C13A—C14A0.9 (7)C11B—C12B—C13B—C14B2.1 (14)
O2A—C9A—C14A—C13A178.1 (4)O2B—C9B—C14B—C13B180.0 (5)
C10A—C9A—C14A—C13A1.9 (6)C10B—C9B—C14B—C13B0.9 (7)
O2A—C9A—C14A—C15A4.6 (6)O2B—C9B—C14B—C15B1.4 (8)
C10A—C9A—C14A—C15A175.3 (4)C10B—C9B—C14B—C15B179.6 (5)
C12A—C13A—C14A—C9A2.1 (6)C12B—C13B—C14B—C9B0.8 (10)
C12A—C13A—C14A—C15A175.4 (4)C12B—C13B—C14B—C15B177.9 (7)
C16A—N2A—C15A—C14A176.2 (4)C16B—N2B—C15B—C14B178.9 (5)
Pd1A—N2A—C15A—C14A0.1 (5)Pd1B—N2B—C15B—C14B0.8 (7)
C9A—C14A—C15A—N2A5.6 (6)C9B—C14B—C15B—N2B7.3 (8)
C13A—C14A—C15A—N2A177.1 (4)C13B—C14B—C15B—N2B171.3 (5)
C15A—N2A—C16A—C17A136.7 (3)C15B—N2B—C16B—C17B166.5 (4)
Pd1A—N2A—C16A—C17A46.8 (4)Pd1B—N2B—C16B—C17B15.5 (7)
N2A—C16A—C17A—C1A75.5 (4)N2B—C16B—C17B—C19B66.4 (6)
N2A—C16A—C17A—C18A169.3 (4)N2B—C16B—C17B—C1B59.0 (6)
N2A—C16A—C17A—C19A48.9 (5)N2B—C16B—C17B—C18B173.5 (4)
N1A—C1A—C17A—C16A65.9 (4)N1B—C1B—C17B—C19B47.4 (6)
N1A—C1A—C17A—C18A179.0 (4)N1B—C1B—C17B—C16B77.9 (5)
N1A—C1A—C17A—C19A58.9 (5)N1B—C1B—C17B—C18B166.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5AB···O1Ai0.822.333.020 (13)142
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pd(C19H20N2O2)]·0.5C2H6O
Mr437.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.2453 (3), 13.7334 (3), 22.8442 (5)
β (°) 101.092 (1)
V3)3769.94 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.38 × 0.33 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.690, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
93296, 11002, 8985
Rint0.039
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.130, 1.13
No. of reflections11002
No. of parameters474
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.66

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5AB···O1Ai0.822.333.020 (13)142
Symmetry code: (i) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors acknowledge financial support from the Ministry of Science Technology and Innovation (MOSTI) for the Science Fund grant No. 03–01-06-SF0273 (Vot: 79121), the National Science Fellowship (NSF), and the Faculty of Science, UTM Skudai for the research facilities. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312.

References

First citationAbu-Surrah, A. S., Thewalt, U. & Rieger, B. (1999). J. Organomet. Chem. 587, 58–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAyala, V., Corma, A., Iglesias, M., Rincon, J. A. & Sanchez, F. (2004). J. Catal.. 224, 170–177.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaselli, A., Gallo, E., Ragaini, F., Oppezzo, A. & Cenini, S. (2005). J. Organomet. Chem. 690, 2142–2148.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron. 61, 9484–9489.  Web of Science CSD CrossRef CAS Google Scholar
First citationPou, D., Platero-Prats, A. E., Peŕez, S., Lo´pez, C., Solans, X., Font-Bardía, M., van Leeuwen, P. W. N. M., van Strijdonck, G. P. F. & Freixa, Z. (2007). J. Organomet. Chem. 692, 5017–5025.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamírez, P., Contreras, R., Valderrama, M., Carmona, D., Lahoz, F. J. & Balana, A. I. (2008). J. Organomet. Chem. 693, 349–356.  Google Scholar
First citationRoy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., Nethaji, M. & Kar, S. K. (2008). Polyhedron. 27, 593–601.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m909-m910
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds