organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Semisynthetic roxburghin tetra­methyl ether

aInstituto de Química, Química de Plantas Colombianas, Universidad de Antioquia, AA 1226, Medellín, Colombia, bGrupo de Procesos Ambientales y Biotecnológicos, Departamento de Ingeniería de Procesos, Universidad EAFIT, AA 3300, Medellín, Colombia, cDepartamento de Química Orgánica, Universidad de Valencia, E-46100 Valencia, Spain, and dDepartamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
*Correspondence e-mail: asaez@eafit.edu.co

(Received 25 February 2008; accepted 16 June 2008; online 19 June 2008)

The title mol­ecule, (E)-2,3′,4,5-tetra­methoxy­stilbene, C18H20O4, is virtually planar. The angle between the two benzene rings is 4.06 (6)°. The inter­molecular inter­actions present in the structure are weak. There are C—H⋯O hydrogen bonds and C—H⋯π-electron ring inter­actions. The mol­ecules are ordered into planes that are parallel to ([\overline{1}]01). The distance between adjacent planes is about 3.3 Å and therefore ππ electron inter­actions between the aromatic planes are also plausible.

Related literature

For the importance and useful applications of stilbenoid compounds, see: Cushman et al. (1991[Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579-2588.]); Nakamura et al. (2006[Nakamura, H., Kuroda, H., Saito, H., Suzuki, R., Yamori, T., Maruyama, K. & Haga, T. (2006). ChemMedChem, 1, 729-740.]). For the precursors of the title compound, see: Krishnamurty & Maheshwari (1988[Krishnamurty, H. G. & Maheshwari, N. (1988). Indian J. Chem. Sect. B, 27, 1035-1036.]); Anjaneyulu et al. (1990[Anjaneyulu, A. S. R., Rani, G. S., Mallavadhani, U. V. & Murthy, Y. L. N. (1990). Indian J. Chem. Sect. B, 29, 219-223.]); Wang et al. (1988[Wang, Z. W., Ma, W. W., McLaughlin, J. L. & Gupta, M. P. (1988). J. Nat. Prod. 51, 382-384.]); Murillo (2001[Murillo, J. (2001). Biota Colomb. 2, 49-58.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O4

  • Mr = 300.34

  • Triclinic, [P \overline 1]

  • a = 7.9633 (4) Å

  • b = 9.2454 (5) Å

  • c = 11.6194 (5) Å

  • α = 73.400 (2)°

  • β = 75.479 (3)°

  • γ = 70.335 (2)°

  • V = 760.59 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.35 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 8260 measured reflections

  • 4391 independent reflections

  • 2785 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 0.98

  • 4391 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3 0.95 2.39 2.7504 (14) 102
C17—H17B⋯O3i 0.98 2.52 3.4046 (16) 150
C18—H18B⋯O4ii 0.98 2.46 3.4342 (15) 172
C19—H19B⋯O1iii 0.98 2.51 3.4082 (15) 152
C17—H17ACg2iv 0.98 2.91 3.7863 (15) 149
C18—H18CCg1v 0.98 2.67 3.5578 (14) 151
Symmetry codes: (i) x, y-1, z; (ii) x-1, y-1, z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z+1. Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C11–C16 ring.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Stilbenoid compounds display significant biological activities (Cushman et al., 1991; Nakamura et al., 2006). Resveratrol and its derivatives deserve considerable attention for their physiological properties and their role in defense mechanisms of the higher plants. The Roxburghin tetramethyl ether (E)-2,3',4,5,-tetramethoxystilbene) that is an analogue of resveratrol, has been originally obtained by modifications of roxburghin (Krishnamurty & Maheshwari, 1988). It has been completely synthesized by the Perkins modified reaction (Anjaneyulu et al., 1990). In addition to the crystal structure determination, we report an efficient synthesis of this product by the cross-metathesis of 3-methoxystyrene and 2,4,5-trimethoxystyrene, the latter having been obtained as a natural product from the bark of Duguetia colombiana (Annonaceae) (Wang et al., 1988; Murillo, 2001).

Related literature top

For the importance and useful applications of stilbenoid compounds, see: Cushman et al. (1991); Nakamura et al. (2006). For the precursors of the title compound, see: Krishnamurty & Maheshwari (1988); Anjaneyulu et al. (1990); Wang et al. (1988); Murillo (2001).

Experimental top

The catalyst (Grubbs second generation, 9 mg, 0.01 mmol), 2,4,5-trimethoxystyrene (39 mg, 0.2 mmol) and 2-methoxystyrene (277 mg, 2.0 mmol) were disolved in dry toluene (10 ml). The solution was refluxed under nitrogen for 24 h at 393 K. The compound was purified by a flash column chromatography with silica gel using hexane/ethylacetate 9:1 as an eluent. The title compound (30.0 mg) was obtained as a yellow powder in a yield of 50.0%.

Suitable crystals (pale yellow needles, 0.35 x 0.10 x 0.04 mm average size) were obtained by slow evaporation in a two solvent system (hexane/ethylacetate 1:1). The identity and purity of the obtained compound was confirmed by spectroscopic methods.

(E)-1,2,4-trimethoxy-5-(3-methoxystyryl)benzene(Roxburghin tetramethyl ether): pale yellow needles, 1H-NMR: (CDCl3,300.13 MHz, numeration acording to ellipsoid plot) d 7.42 (d, J= 16.4 Hz, H-7), 7.26 (dd, J = 8.3,7.7 Hz, H-15), 7.12 (s, H-6), 7.12 (d, J= 7.7 Hz, H-16), 7.06 (s, H-12), 6.79 (d, J= 8.3 Hz, H-14), 6.54 (s, H-3), 3.92 (s, C-2-OCH3),3.92 (s, C-1-OCH3), 3.87 (s, C-4-OCH3),3.85 (s, C-13-OCH3); 13C (CDCl3, 75.47 MHz) d 160.2 (C-13), 152.2 (C-4), 150.1 (C-2),143.8 (C-1), 140.0 (C-11), 129.9 (C-15), 127.1 (C-8), 123.7 (C-7), 119.5 (C-16),118.6 (C-5), 113.1 (C-12), 111.9 (C-6), 109.8 (C-14), 98.1 (C-3), 57.1 (C-17), 56.9(C-18), 56.5 (C-19), 55.7 (C-20). EIMS m/z300 (100), 257 (8), 195 (12).

Refinement top

All the H atoms were discernible in the difference electron-density maps. However, they were situated into idealized positions and constrained by riding model approximation. C—Hmethyl=0.98 Å; C—Haryl=0.95 Å; UisoHmethyl=1.5Ueq(Cmethyl); UisoHaryl=1.2Ueq(Caryl).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids shown at the 50% probability level.
(E)-2,3',4,5-tetramethoxystilbene top
Crystal data top
C18H20O4Z = 2
Mr = 300.34F(000) = 320
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9633 (4) ÅCell parameters from 46078 reflections
b = 9.2454 (5) Åθ = 1.0–30.0°
c = 11.6194 (5) ŵ = 0.09 mm1
α = 73.400 (2)°T = 150 K
β = 75.479 (3)°Needle, yellow
γ = 70.335 (2)°0.35 × 0.10 × 0.04 mm
V = 760.59 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
2785 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 30.0°, θmin = 2.7°
Detector resolution: 9 pixels mm-1h = 1111
ω scansk = 1312
8260 measured reflectionsl = 1616
4391 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.136H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0789P)2]
where P = (Fo2 + 2Fc2)/3
4391 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
76 constraints
Crystal data top
C18H20O4γ = 70.335 (2)°
Mr = 300.34V = 760.59 (7) Å3
Triclinic, P1Z = 2
a = 7.9633 (4) ÅMo Kα radiation
b = 9.2454 (5) ŵ = 0.09 mm1
c = 11.6194 (5) ÅT = 150 K
α = 73.400 (2)°0.35 × 0.10 × 0.04 mm
β = 75.479 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2785 reflections with I > 2σ(I)
8260 measured reflectionsRint = 0.025
4391 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.98Δρmax = 0.29 e Å3
4391 reflectionsΔρmin = 0.23 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35419 (11)0.13391 (9)0.41479 (8)0.0342 (2)
O20.16009 (11)0.25274 (9)0.59974 (7)0.0302 (2)
O30.31164 (11)0.74440 (9)0.41175 (7)0.0322 (2)
O40.83171 (12)1.06354 (9)0.08834 (8)0.0352 (2)
C10.34968 (15)0.28542 (12)0.40914 (10)0.0257 (2)
C20.24495 (14)0.34919 (12)0.50941 (9)0.0242 (2)
C30.23241 (14)0.50121 (12)0.51169 (10)0.0252 (2)
H30.16200.54410.57960.030*
C40.32276 (14)0.59219 (12)0.41457 (10)0.0242 (2)
C50.42856 (14)0.53130 (12)0.31388 (10)0.0237 (2)
C60.43875 (15)0.37648 (12)0.31392 (10)0.0260 (2)
H60.50920.33300.24630.031*
C70.52275 (15)0.62808 (13)0.21313 (10)0.0255 (2)
H70.50080.73400.21760.031*
C80.63618 (15)0.58230 (13)0.11577 (10)0.0286 (2)
H80.65830.47620.11160.034*
C110.73066 (15)0.67918 (13)0.01411 (10)0.0266 (2)
C120.72987 (14)0.83038 (13)0.01567 (10)0.0257 (2)
H120.66610.87410.08440.031*
C130.82170 (15)0.91678 (13)0.08266 (10)0.0275 (3)
C140.91383 (17)0.85479 (15)0.18482 (11)0.0352 (3)
H140.97540.91440.25240.042*
C150.91459 (18)0.70674 (15)0.18674 (11)0.0400 (3)
H150.97700.66420.25620.048*
C160.82497 (17)0.61818 (14)0.08813 (11)0.0348 (3)
H160.82810.51540.09060.042*
C170.48206 (17)0.05869 (13)0.32371 (12)0.0372 (3)
H17A0.44830.11270.24350.056*
H17B0.48250.05160.34110.056*
H17C0.60300.06340.32410.056*
C180.06092 (16)0.31142 (13)0.70597 (10)0.0303 (3)
H18A0.14280.33480.74390.046*
H18B0.00740.23190.76400.046*
H18C0.03530.40770.68280.046*
C190.19201 (16)0.81424 (13)0.50742 (11)0.0329 (3)
H19A0.06890.81240.50970.049*
H19B0.19390.92350.49300.049*
H19C0.23090.75500.58540.049*
C200.75180 (17)1.12894 (14)0.01691 (11)0.0349 (3)
H20A0.62081.14490.03260.052*
H20B0.77621.23020.00290.052*
H20C0.80361.05660.08750.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0446 (5)0.0235 (4)0.0337 (5)0.0156 (3)0.0077 (4)0.0104 (3)
O20.0344 (4)0.0262 (4)0.0267 (4)0.0133 (3)0.0047 (3)0.0040 (3)
O30.0395 (5)0.0247 (4)0.0317 (4)0.0148 (3)0.0080 (4)0.0108 (3)
O40.0432 (5)0.0296 (4)0.0328 (5)0.0187 (4)0.0041 (4)0.0064 (4)
C10.0290 (6)0.0202 (5)0.0279 (6)0.0089 (4)0.0023 (5)0.0054 (4)
C20.0240 (5)0.0245 (5)0.0221 (5)0.0092 (4)0.0019 (4)0.0015 (4)
C30.0251 (5)0.0255 (5)0.0243 (5)0.0078 (4)0.0008 (4)0.0066 (4)
C40.0256 (5)0.0212 (5)0.0264 (6)0.0083 (4)0.0024 (4)0.0062 (4)
C50.0231 (5)0.0239 (5)0.0242 (5)0.0089 (4)0.0024 (4)0.0040 (4)
C60.0278 (6)0.0255 (5)0.0244 (5)0.0095 (4)0.0002 (4)0.0069 (4)
C70.0272 (6)0.0238 (5)0.0255 (6)0.0097 (4)0.0024 (5)0.0045 (4)
C80.0339 (6)0.0233 (5)0.0279 (6)0.0116 (4)0.0006 (5)0.0056 (4)
C110.0261 (5)0.0276 (6)0.0244 (5)0.0091 (4)0.0007 (4)0.0046 (4)
C120.0259 (5)0.0282 (5)0.0217 (5)0.0089 (4)0.0002 (4)0.0059 (4)
C130.0274 (6)0.0281 (6)0.0266 (6)0.0105 (5)0.0020 (5)0.0048 (5)
C140.0397 (7)0.0398 (7)0.0259 (6)0.0210 (6)0.0055 (5)0.0051 (5)
C150.0488 (8)0.0436 (7)0.0278 (6)0.0192 (6)0.0094 (6)0.0149 (6)
C160.0434 (7)0.0302 (6)0.0309 (6)0.0158 (5)0.0058 (5)0.0112 (5)
C170.0439 (7)0.0279 (6)0.0381 (7)0.0126 (5)0.0071 (6)0.0141 (5)
C180.0343 (6)0.0345 (6)0.0211 (5)0.0152 (5)0.0019 (5)0.0038 (5)
C190.0353 (6)0.0276 (6)0.0358 (7)0.0111 (5)0.0055 (5)0.0142 (5)
C200.0374 (7)0.0310 (6)0.0373 (7)0.0134 (5)0.0003 (5)0.0104 (5)
Geometric parameters (Å, º) top
O1—C11.3720 (12)C11—C121.4011 (15)
O1—C171.4298 (13)C12—C131.3896 (15)
O2—C21.3670 (13)C12—H120.9500
O2—C181.4308 (13)C13—C141.3945 (16)
O3—C41.3713 (12)C14—C151.3733 (16)
O3—C191.4231 (13)C14—H140.9500
O4—C131.3677 (13)C15—C161.3927 (17)
O4—C201.4281 (13)C15—H150.9500
C1—C61.3828 (15)C16—H160.9500
C1—C21.4052 (14)C17—H17A0.9800
C2—C31.3826 (14)C17—H17B0.9800
C3—C41.3988 (15)C17—H17C0.9800
C3—H30.9500C18—H18A0.9800
C4—C51.3994 (14)C18—H18B0.9800
C5—C61.4060 (14)C18—H18C0.9800
C5—C71.4651 (15)C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C7—C81.3336 (16)C19—H19C0.9800
C7—H70.9500C20—H20A0.9800
C8—C111.4721 (15)C20—H20B0.9800
C8—H80.9500C20—H20C0.9800
C11—C161.3942 (15)
C1—O1—C17116.35 (8)O4—C13—C14115.01 (9)
C2—O2—C18117.08 (8)C12—C13—C14120.36 (10)
C4—O3—C19117.81 (8)C15—C14—C13119.33 (10)
C13—O4—C20117.84 (8)C15—C14—H14120.3
O1—C1—C6125.08 (10)C13—C14—H14120.3
O1—C1—C2115.75 (9)C14—C15—C16120.85 (11)
C6—C1—C2119.18 (9)C14—C15—H15119.6
O2—C2—C3124.25 (10)C16—C15—H15119.6
O2—C2—C1115.93 (9)C15—C16—C11120.49 (10)
C3—C2—C1119.82 (9)C15—C16—H16119.8
C2—C3—C4120.40 (10)C11—C16—H16119.8
C2—C3—H3119.8O1—C17—H17A109.5
C4—C3—H3119.8O1—C17—H17B109.5
O3—C4—C3122.49 (9)H17A—C17—H17B109.5
O3—C4—C5116.58 (9)O1—C17—H17C109.5
C3—C4—C5120.93 (9)H17A—C17—H17C109.5
C4—C5—C6117.45 (9)H17B—C17—H17C109.5
C4—C5—C7120.20 (9)O2—C18—H18A109.5
C6—C5—C7122.35 (10)O2—C18—H18B109.5
C1—C6—C5122.22 (10)H18A—C18—H18B109.5
C1—C6—H6118.9O2—C18—H18C109.5
C5—C6—H6118.9H18A—C18—H18C109.5
C8—C7—C5126.52 (10)H18B—C18—H18C109.5
C8—C7—H7116.7O3—C19—H19A109.5
C5—C7—H7116.7O3—C19—H19B109.5
C7—C8—C11126.74 (10)H19A—C19—H19B109.5
C7—C8—H8116.6O3—C19—H19C109.5
C11—C8—H8116.6H19A—C19—H19C109.5
C16—C11—C12118.51 (10)H19B—C19—H19C109.5
C16—C11—C8118.73 (10)O4—C20—H20A109.5
C12—C11—C8122.76 (10)O4—C20—H20B109.5
C13—C12—C11120.45 (10)H20A—C20—H20B109.5
C13—C12—H12119.8O4—C20—H20C109.5
C11—C12—H12119.8H20A—C20—H20C109.5
O4—C13—C12124.63 (10)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.952.392.7504 (14)102
C17—H17B···O3i0.982.523.4046 (16)150
C18—H18B···O4ii0.982.463.4342 (15)172
C19—H19B···O1iii0.982.513.4082 (15)152
C17—H17A···Cg2iv0.982.913.7863 (15)149
C18—H18C···Cg1v0.982.673.5578 (14)151
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H20O4
Mr300.34
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.9633 (4), 9.2454 (5), 11.6194 (5)
α, β, γ (°)73.400 (2), 75.479 (3), 70.335 (2)
V3)760.59 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8260, 4391, 2785
Rint0.025
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 0.98
No. of reflections4391
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.952.392.7504 (14)102
C17—H17B···O3i0.982.523.4046 (16)150
C18—H18B···O4ii0.982.463.4342 (15)172
C19—H19B···O1iii0.982.513.4082 (15)152
C17—H17A···Cg2iv0.982.913.7863 (15)149
C18—H18C···Cg1v0.982.673.5578 (14)151
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x, y+1, z+1.
 

Acknowledgements

The authors thank Colciencias and Universidad de Antioquia (Programa de Sostenibilidad) for financial support.

References

First citationAnjaneyulu, A. S. R., Rani, G. S., Mallavadhani, U. V. & Murthy, Y. L. N. (1990). Indian J. Chem. Sect. B, 29, 219–223.  Google Scholar
First citationCushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579–2588.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKrishnamurty, H. G. & Maheshwari, N. (1988). Indian J. Chem. Sect. B, 27, 1035–1036.  Google Scholar
First citationMurillo, J. (2001). Biota Colomb. 2, 49–58.  Google Scholar
First citationNakamura, H., Kuroda, H., Saito, H., Suzuki, R., Yamori, T., Maruyama, K. & Haga, T. (2006). ChemMedChem, 1, 729–740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. W., Ma, W. W., McLaughlin, J. L. & Gupta, M. P. (1988). J. Nat. Prod. 51, 382–384.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds