organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl eucomate

aNutrition and Metabolism Laboratory, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA, and bInstitute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 27 April 2008; accepted 20 June 2008; online 28 June 2008)

The crystal structure of the title compound [systematic name: methyl 3-carboxy-3-hydr­oxy-3-(4-hydroxy­benz­yl)propanoate], C12H14O6, is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The mol­ecules are arranged in layers, parallel to (001), which are inter­connected by the O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Heller & Tamm (1974[Heller, W. & Tamm, C. (1974). Helv. Chim. Acta, 57, 1766-1784.]); Jiang et al. (2002[Jiang, J. Q., Ye, W. C., Chen, Z., Lou, F. C. & Min, Z. D. (2002). J. Chin. Pharm. Sci. 11, 1-3.], 2006[Jiang, J. Q., Li, Y. F., Chen, Z., Min, Z. D. & Lou, F. C. (2006). Steroids, 71, 1073-1077.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14O6

  • Mr = 254.23

  • Orthorhombic, P 21 21 21

  • a = 5.9109 (6) Å

  • b = 7.0348 (7) Å

  • c = 29.109 (3) Å

  • V = 1210.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.40 × 0.32 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 6709 measured reflections

  • 1279 independent reflections

  • 1047 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.05

  • 1278 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.96 2.775 (2) 172
O2—H2⋯O1ii 0.82 2.33 2.888 (2) 125
O4—H4⋯O2iii 0.82 1.85 2.639 (2) 161
C12—H12B⋯O5iv 0.96 2.42 3.268 (4) 148
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1998[Siemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Methyl eucomate is the methyl ester of the eucomic acid. The title compound has been isolated from several edible plants, e. g. Opuntia dillenii (Jiang et al., 2006) or Opuntia vulgaris (Jiang et al., 2002). However, the stereochemistry of the ester has not been established yet. In the present paper, we report its crystal structure.

The molecule contains phenol, carboxyl, ester and hydroxyl functional groups (Fig. 1). The mean deviation of the benzene ring from planarity is 0.0004 Å and its dihedral angle with the plane of the carboxylic group at C8 is 50.3 (3)°, while it is roughly perpendicular to the ester group at C10 with a dihedral angle of 87.3 (3)°.

The intermolecular hydrogen bonds O1—H···O3, O2—H···O1 and O4—H···O2 (Tab. 1) link the molecules into layers that are parallel to (001) (Fig. 2).

There is no heavy atom with a significant anomalous dispersion contribution, so the absolute configuration from the diffraction pattern itself could not be determined. However, the absolute configuration of the eucomic acid has been established by synthesis (Heller & Tamm, 1974) though its crystal structure has not been determined. Therefore the title compound is expected to share the same R configuration at the chiral centre C8.

Related literature top

For related literature, see: Heller & Tamm (1974); Jiang et al. (2002, 2006).

Experimental top

The title compound was purified from the stems of Opuntia vulgaris according to the reported procedures (Jiang et al., 2002). Briefly, the stems of Opuntia vulgaris (1 kg) was extracted with 95% ethanol under room temperature. The extracted solution was concentrated with rotary evaporator to afford a crude extract, which was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol. Then the n-butanol fraction was subjected to silica gel column chromatography eluted with methanol-chloroform gradient solvent system to afford the title compound (16 mg). The transparent rectangular crystals of the title compound with average size of 0.50 × 0.40 × 0.30 mm were obtained by slow evaporation of the methanol solution at room temperature.

Refinement top

Though all the hydrogens were discernible in the difference electron density maps. Neverheless, the hydrogens were situated into the idealized position and constrained during the refinement. Hydroxyl hydrogens: O-H equalled to 0.82 Å, Uiso(H)=1.5 UeqO; Caryl-H equalled to 0.93 Å, Uiso(H)=1.2 UeqCaryl; Cmethylene-H equalled to 0.97 Å, Uiso(H)=1.2 UeqCmethylene; Cmethyl-H equalled to 0.96 Å, Uiso(H)=1.5 UeqCmethyl.

There is no heavy atom with significant anomalous dispersion contribution in the structure for the used wavelength, so the absolute configuration from the diffraction pattern itself was not determined. 836 Friedel reflections were merged before the refinement. However, the absolute configuration of the related eucomic acid has been established previously (Heller & Tamm, 1974) and therefore the title compound has been expected to share the same R configuration at the chiral center C8.

Reflection (0 0 2) was omitted.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: XPREP in SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title structure showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the title structure viewed down the a axis.
methyl 3-carboxy-3-hydroxy-3-(4-hydroxybenzyl)propanoate top
Crystal data top
C12H14O6F(000) = 536
Mr = 254.23Dx = 1.395 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6709 reflections
a = 5.9109 (6) Åθ = 1.4–25.0°
b = 7.0348 (7) ŵ = 0.11 mm1
c = 29.109 (3) ÅT = 293 K
V = 1210.4 (2) Å3Rectangular, colourless
Z = 40.40 × 0.32 × 0.25 mm
Data collection top
Bruker SMART/CCD
diffractometer
1047 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
ω scansh = 67
6709 measured reflectionsk = 87
1279 independent reflectionsl = 2734
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0328P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1278 reflectionsΔρmax = 0.14 e Å3
168 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
42 constraintsExtinction coefficient: 0.0070 (19)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H14O6V = 1210.4 (2) Å3
Mr = 254.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9109 (6) ŵ = 0.11 mm1
b = 7.0348 (7) ÅT = 293 K
c = 29.109 (3) Å0.40 × 0.32 × 0.25 mm
Data collection top
Bruker SMART/CCD
diffractometer
1047 reflections with I > 2σ(I)
6709 measured reflectionsRint = 0.046
1279 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
1278 reflectionsΔρmin = 0.12 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2505 (3)0.2830 (2)0.32392 (5)0.0466 (5)
H10.13130.23460.33230.070*
O20.5510 (2)0.5081 (2)0.11441 (5)0.0400 (4)
H20.50990.58650.13350.060*
O30.1405 (3)0.6278 (2)0.13901 (5)0.0425 (4)
O40.0301 (3)0.3948 (3)0.09911 (6)0.0499 (5)
H40.14600.45000.10700.075*
O50.2745 (4)0.6569 (3)0.03265 (6)0.0640 (6)
O60.3709 (3)0.4543 (2)0.02286 (5)0.0543 (5)
C10.2722 (4)0.2631 (3)0.27718 (8)0.0344 (6)
C20.4773 (4)0.3133 (3)0.25799 (8)0.0367 (6)
H2B0.59320.35980.27640.044*
C30.5089 (4)0.2940 (3)0.21133 (8)0.0370 (6)
H3A0.64750.32860.19870.044*
C40.3420 (4)0.2253 (3)0.18265 (8)0.0346 (6)
C50.1367 (4)0.1752 (3)0.20275 (8)0.0389 (6)
H5A0.02090.12850.18430.047*
C60.1010 (4)0.1933 (3)0.24947 (9)0.0387 (6)
H6A0.03730.15880.26220.046*
C70.3804 (4)0.2011 (3)0.13179 (8)0.0400 (6)
H7A0.26930.11190.12010.048*
H7B0.52860.14510.12720.048*
C80.3660 (4)0.3855 (3)0.10324 (7)0.0336 (5)
C90.3831 (4)0.3384 (3)0.05217 (8)0.0403 (6)
H9A0.53390.29040.04590.048*
H9B0.27670.23750.04520.048*
C100.3374 (4)0.5023 (4)0.02090 (8)0.0424 (6)
C110.1476 (4)0.4865 (4)0.11534 (7)0.0347 (5)
C120.3196 (5)0.5985 (4)0.05667 (9)0.0681 (9)
H12A0.35520.55150.08680.102*
H12B0.40790.71020.05050.102*
H12C0.16170.62970.05520.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0418 (10)0.0604 (11)0.0377 (10)0.0079 (10)0.0050 (8)0.0063 (9)
O20.0255 (9)0.0527 (11)0.0418 (11)0.0021 (8)0.0013 (7)0.0105 (9)
O30.0368 (9)0.0474 (10)0.0432 (10)0.0061 (9)0.0051 (8)0.0103 (8)
O40.0229 (9)0.0617 (12)0.0651 (12)0.0047 (9)0.0011 (9)0.0157 (11)
O50.0819 (15)0.0646 (12)0.0454 (11)0.0208 (12)0.0057 (11)0.0017 (10)
O60.0678 (12)0.0652 (11)0.0298 (9)0.0045 (11)0.0042 (10)0.0054 (9)
C10.0334 (13)0.0335 (13)0.0363 (14)0.0024 (11)0.0021 (11)0.0060 (11)
C20.0315 (12)0.0395 (14)0.0391 (15)0.0086 (12)0.0029 (11)0.0020 (12)
C30.0277 (12)0.0404 (13)0.0429 (15)0.0040 (12)0.0035 (11)0.0041 (12)
C40.0294 (12)0.0326 (12)0.0417 (14)0.0046 (11)0.0010 (11)0.0021 (11)
C50.0293 (12)0.0412 (13)0.0463 (15)0.0009 (12)0.0045 (12)0.0000 (12)
C60.0263 (12)0.0430 (13)0.0470 (15)0.0029 (11)0.0030 (11)0.0068 (13)
C70.0336 (12)0.0431 (13)0.0431 (14)0.0062 (12)0.0021 (12)0.0074 (12)
C80.0223 (11)0.0441 (14)0.0344 (13)0.0009 (12)0.0012 (11)0.0054 (12)
C90.0334 (13)0.0521 (14)0.0356 (14)0.0060 (12)0.0028 (11)0.0071 (12)
C100.0315 (13)0.0572 (16)0.0385 (14)0.0011 (15)0.0029 (12)0.0075 (14)
C110.0277 (12)0.0460 (14)0.0303 (12)0.0012 (13)0.0001 (11)0.0007 (12)
C120.085 (2)0.080 (2)0.0393 (15)0.023 (2)0.0078 (16)0.0111 (16)
Geometric parameters (Å, º) top
O1—C11.374 (3)C4—C51.392 (3)
O1—H10.8200C4—C71.507 (3)
O2—C81.430 (3)C5—C61.382 (3)
O2—H20.8200C5—H5A0.9300
O3—C111.210 (3)C6—H6A0.9300
O4—C111.320 (3)C7—C81.543 (3)
O4—H40.8200C7—H7A0.9700
O5—C101.200 (3)C7—H7B0.9700
O6—C101.333 (3)C8—C111.515 (3)
O6—C121.446 (3)C8—C91.526 (3)
C1—C21.380 (3)C9—C101.494 (3)
C1—C61.384 (3)C9—H9A0.9700
C2—C31.378 (3)C9—H9B0.9700
C2—H2B0.9300C12—H12A0.9600
C3—C41.380 (3)C12—H12B0.9600
C3—H3A0.9300C12—H12C0.9600
C1—O1—H1109.5C8—C7—H7B108.5
C8—O2—H2109.5H7A—C7—H7B107.5
C11—O4—H4109.5O2—C8—C11108.40 (17)
C10—O6—C12116.2 (2)O2—C8—C9107.55 (19)
O1—C1—C2117.2 (2)C11—C8—C9112.63 (19)
O1—C1—C6123.0 (2)O2—C8—C7110.03 (18)
C2—C1—C6119.8 (2)C11—C8—C7108.44 (18)
C3—C2—C1119.5 (2)C9—C8—C7109.77 (19)
C3—C2—H2B120.2C10—C9—C8114.4 (2)
C1—C2—H2B120.2C10—C9—H9A108.6
C2—C3—C4122.3 (2)C8—C9—H9A108.6
C2—C3—H3A118.9C10—C9—H9B108.6
C4—C3—H3A118.9C8—C9—H9B108.6
C3—C4—C5117.2 (2)H9A—C9—H9B107.6
C3—C4—C7121.8 (2)O5—C10—O6123.3 (2)
C5—C4—C7121.0 (2)O5—C10—C9125.6 (2)
C6—C5—C4121.5 (2)O6—C10—C9111.1 (2)
C6—C5—H5A119.2O3—C11—O4125.3 (2)
C4—C5—H5A119.2O3—C11—C8123.2 (2)
C5—C6—C1119.6 (2)O4—C11—C8111.43 (19)
C5—C6—H6A120.2O6—C12—H12A109.5
C1—C6—H6A120.2O6—C12—H12B109.5
C4—C7—C8115.19 (19)H12A—C12—H12B109.5
C4—C7—H7A108.5O6—C12—H12C109.5
C8—C7—H7A108.5H12A—C12—H12C109.5
C4—C7—H7B108.5H12B—C12—H12C109.5
O1—C1—C2—C3179.3 (2)C4—C7—C8—C9174.1 (2)
C6—C1—C2—C30.3 (4)O2—C8—C9—C1068.8 (2)
C1—C2—C3—C40.2 (4)C11—C8—C9—C1050.5 (3)
C2—C3—C4—C50.1 (3)C7—C8—C9—C10171.5 (2)
C2—C3—C4—C7178.7 (2)C12—O6—C10—O52.1 (4)
C3—C4—C5—C60.0 (3)C12—O6—C10—C9176.6 (2)
C7—C4—C5—C6178.7 (2)C8—C9—C10—O55.7 (4)
C4—C5—C6—C10.1 (4)C8—C9—C10—O6175.6 (2)
O1—C1—C6—C5179.2 (2)O2—C8—C11—O313.9 (3)
C2—C1—C6—C50.2 (4)C9—C8—C11—O3132.8 (2)
C3—C4—C7—C878.5 (3)C7—C8—C11—O3105.5 (2)
C5—C4—C7—C8102.8 (3)O2—C8—C11—O4169.74 (19)
C4—C7—C8—O267.7 (3)C9—C8—C11—O450.9 (3)
C4—C7—C8—C1150.7 (3)C7—C8—C11—O470.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.962.775 (2)172
O2—H2···O1ii0.822.342.888 (2)125
O4—H4···O2iii0.821.852.639 (2)161
C12—H12B···O5iv0.962.423.268 (4)148
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC12H14O6
Mr254.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.9109 (6), 7.0348 (7), 29.109 (3)
V3)1210.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.32 × 0.25
Data collection
DiffractometerBruker SMART/CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6709, 1279, 1047
Rint0.046
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 1.05
No. of reflections1278
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: SMART (Bruker, 1998), SMART and SAINT (Bruker, 1998), XPREP in SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.8201.9602.775 (2)172.1
O2—H2···O1ii0.8202.3352.888 (2)125.3
O4—H4···O2iii0.8201.8502.639 (2)161.1
C12—H12B···O5iv0.9602.4203.268 (4)147.6
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1/2, y+3/2, z.
 

Acknowledgements

This work was supported by the Starting Fund for Excellent Talents of Jinan University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHeller, W. & Tamm, C. (1974). Helv. Chim. Acta, 57, 1766–1784.  CrossRef CAS Web of Science Google Scholar
First citationJiang, J. Q., Li, Y. F., Chen, Z., Min, Z. D. & Lou, F. C. (2006). Steroids, 71, 1073–1077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, J. Q., Ye, W. C., Chen, Z., Lou, F. C. & Min, Z. D. (2002). J. Chin. Pharm. Sci. 11, 1–3.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds