organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trimesic acid di­methyl sulfoxide solvate: space group revision

aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, and bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, AP 1067, 72001 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 14 May 2008; accepted 20 June 2008; online 28 June 2008)

The structure of the title solvate, C9H6O6·C2H6OS, was determined 30 years ago [Herbstein, Kapon & Wasserman (1978[Herbstein, F. H., Kapon, M. & Wasserman, S. (1978). Acta Cryst. B34, 1613-1617.]). Acta Cryst. B34, 1613–1617], with data collected at room temperature, and refined in the space group P21. The present redetermination, based on high-resolution diffraction data, shows that the actual space group is more likely to be P21/m. The crystal structure contains layers of trimesic acid molecules lying on mirror planes. A mirror plane also passes through the S and O atoms of the solvent molecule. The molecules in each layer are inter­connected through strong O—H⋯O hydrogen bonds, forming a two-dimensional supra­molecular network within each layer. The donor groups are the hydroxyls of the trimesic acid mol­ecules, while the acceptors are the carbonyl or the sulfoxide O atoms.

Related literature

For the first report on the title solvate structure, see: Herbstein et al. (1978[Herbstein, F. H., Kapon, M. & Wasserman, S. (1978). Acta Cryst. B34, 1613-1617.]). For the use of trimesic acid as a building block for supra­molecular networks, see: Almeida Paz & Klinowski (2004[Almeida Paz, F. A. & Klinowski, J. (2004). Inorg. Chem. 43, 3882-3893.]). For a description of hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. International Union of Crystallography Monographs on Crystallography. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6O6·C2H6OS

  • Mr = 288.27

  • Monoclinic, P 21 /m

  • a = 8.7444 (7) Å

  • b = 6.8365 (7) Å

  • c = 10.7113 (8) Å

  • β = 96.195 (5)°

  • V = 636.59 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 (1) K

  • 0.60 × 0.48 × 0.36 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.851, Tmax = 0.904

  • 4582 measured reflections

  • 2007 independent reflections

  • 1772 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 97 reflections intensity decay: <1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.112

  • S = 1.07

  • 2007 reflections

  • 123 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.84 (3) 1.82 (3) 2.6435 (16) 165 (3)
O3—H3⋯O7ii 0.85 (4) 1.83 (4) 2.6593 (17) 164 (4)
O5—H5⋯O7iii 0.86 (3) 1.73 (3) 2.5723 (16) 169 (3)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was obtained during attempts to prepare coordination compounds with transition metals and benzene-1,3,5-tricarboxylic acid. The latter compound is also known as trimesic acid, TMA. It is a rigid, planar molecule that is soluble in a number of solvents. Its three exo-carboxylic acid groups are arranged symmetrically around the benzene ring, forming a flat, trigonal molecule, which can be used as a building block in the construction of organic crystals and multidimensional metalorganic frameworks (e.g. Almeida Paz & Klinowski, 2004).

The clathration ability of TMA allowed to prepare a number of solvate structures, including hydrates, and consequently determination of these structures. Among them, the dimethylsulfoxide (DMSO) solvate has been reported already 30 years ago (Herbstein et al., 1978). The data were collected at room temperature with Mo-Kα radiation. Laue symmetry as well as systematic extinctions are in agreement with the space group P21/m or P21. Herbstein et al. applied the Hamilton test, i.e. essentially based their choice on final R residuals. The space group P21 was eventually retained (R = 0.084) and P21/m rejected (R = 0.092), despite the E statistics, which favoured a centrosymmetric space group. The authors, however, commented in their publication that "there is some doubt about the correctness of this decision".

We have now collected an accurate high-resolution diffraction pattern for this compound. Wilson statistics are not in agreement with the non-centrosymmetric space group, for instance E2-1 = 1.002 for 4589 E values. Refinement in space group P21 converges to R1 = 0.035 for 1772 Fo>4σ(Fo). However, abnormally high correlation matrix elements are observed for methyl groups in DMSO, and methyl H atoms, if refined freely, exhibit unrealistic C—H bond lengths, ranging from 0.68 Å to 1.48 Å. Finally, refinement using non-merged data (286 measured Friedel pairs) gives an inconsistent Flack parameter, 0.23 (13).

All these symptoms indicate that the space group should be rather P21/m. All the atoms with exception of the methyl group (C10) of the DMSO molecule lie in the mirror plane. The methyl group (C10) occupies a general position (Fig. 1). Expected geometry for both moieties is observed.

The displacement parameters deserve a careful examination. The longest axes of the displacement parameters are perpendicular to the molecular planes. In the case of the TMA molecule, the U3/U1 ratios of non-hydrogen atoms lie in the range 2.17–6.60. A similar thermal behaviour is observed for DMSO atoms lying in the m plane, S1 (U3/U1 = 3.69) and O7 (U3/U1 = 5.77). Such motions suggest another possibility that the crystal can contain statistically distributed non-centrosymmetric domains; i.e. the structure can be non-centrosymmetric on a shorter scale. Therefore, the space group P21 can not be totally ruled out, and the actual space group may also be dependent on the choice of the particular sample. Further work, like multi-temperatures data collections, would be desirable in order to determine the symmetry unambiguously.

On the other hand, the molecular motion within the molecular planes would be affected by stronger intermolecular interactions that take place within each molecular layer. The molecules are involved in a two-dimensional supramolecular network through the strong hydrogen bonds (Desiraju & Steiner, 1999; Tab. 1). All the hydroxyl groups of the TMA molecule form O—H···O hydrogen bonds using carbonyl and sulfoxide O atoms as acceptors. As a result, the molecular layers are formed in the crystal structure (Fig. 2), parallel to (010). These layers correspond to the crystallographic m planes, and are thus separated by b/2 = 3.42 Å.

Related literature top

For the first report on the title solvate structure, see: Herbstein et al. (1978). For the use of trimesic acid as building block for supramolecular networks, see: Almeida Paz & Klinowski (2004). For a description of hydrogen bonds, see: Desiraju & Steiner (1999).

Experimental top

Copper (0.1 g, 1.5 mmol), TMA (0.32 g, 1.5 mmol), and DMSO (3.3 g, 42.2 mmol) were placed in a flask and the mixture was heated at 338 K with magnetic stirring until total dissolution of the metal was observed (0.5–2 hours). The solution was filtered and allowed to stand at room temperature for 12 hours, after which the crystals of the title compound were formed.

Refinement top

Hydroxyl H atoms were found in a difference map, and refined freely. Other H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 (aromatic CH) or 0.96 Å (methyl CH3) and refined using a riding model approximation, with Uiso(H) = 1.5Ueq(carrier C) for the methyl group and Uiso(H) = 1.2Ueq(carrier C) for the aryl groups. The methyl group is considered as a rigid group free to rotate about the S1—C10 bond.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids for non-H atoms at the 50% probability level. Symmetry code: (i) x, 1/2 - y, z.
[Figure 2] Fig. 2. A part of the packing structure for the title compound, viewed approximately along [010]. The hydrogen bonds forming the two-dimensional supramolecular network are depicted by dashed lines.
Trimesic acid dimethyl sulfoxide solvate top
Crystal data top
C9H6O6·C2H6OSF(000) = 300
Mr = 288.27Dx = 1.504 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 45 reflections
a = 8.7444 (7) Åθ = 4.7–13.8°
b = 6.8365 (7) ŵ = 0.28 mm1
c = 10.7113 (8) ÅT = 298 K
β = 96.195 (5)°Prism, colourless
V = 636.59 (10) Å30.60 × 0.48 × 0.36 mm
Z = 2
Data collection top
Siemens P4
diffractometer
1772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 30.0°, θmin = 1.9°
2θ/ω scansh = 1212
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 91
Tmin = 0.851, Tmax = 0.904l = 1515
4582 measured reflections3 standard reflections every 97 reflections
2007 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1017P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2007 reflectionsΔρmax = 0.38 e Å3
123 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 constraintsExtinction coefficient: 0.040 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H6O6·C2H6OSV = 636.59 (10) Å3
Mr = 288.27Z = 2
Monoclinic, P21/mMo Kα radiation
a = 8.7444 (7) ŵ = 0.28 mm1
b = 6.8365 (7) ÅT = 298 K
c = 10.7113 (8) Å0.60 × 0.48 × 0.36 mm
β = 96.195 (5)°
Data collection top
Siemens P4
diffractometer
1772 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.015
Tmin = 0.851, Tmax = 0.9043 standard reflections every 97 reflections
4582 measured reflections intensity decay: <1%
2007 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.38 e Å3
2007 reflectionsΔρmin = 0.30 e Å3
123 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60335 (14)0.25000.50040 (13)0.0315 (3)
C20.65053 (16)0.25000.38033 (13)0.0356 (3)
H2A0.57730.25000.31060.043*
C30.80576 (16)0.25000.36384 (12)0.0355 (3)
C40.91692 (16)0.25000.46759 (13)0.0361 (3)
H4A1.02100.25000.45670.043*
C50.86956 (15)0.25000.58847 (12)0.0333 (3)
C60.71358 (15)0.25000.60405 (13)0.0325 (3)
H6A0.68290.25000.68450.039*
C70.43539 (16)0.25000.51484 (15)0.0363 (3)
C80.84857 (18)0.25000.23234 (14)0.0428 (4)
C90.98606 (16)0.25000.70011 (13)0.0382 (4)
O10.40892 (13)0.25000.63458 (12)0.0512 (4)
H10.314 (4)0.25000.640 (3)0.079 (9)*
O20.33561 (13)0.25000.42797 (12)0.0527 (4)
O30.99843 (14)0.25000.22789 (12)0.0648 (5)
H31.018 (4)0.25000.152 (4)0.105 (12)*
O40.75495 (16)0.25000.14056 (11)0.0610 (4)
O50.92574 (13)0.25000.80719 (10)0.0548 (4)
H50.998 (3)0.25000.868 (3)0.063 (7)*
O61.12357 (13)0.25000.69470 (12)0.0600 (4)
S10.28919 (4)0.25000.01135 (3)0.04770 (18)
C100.35278 (17)0.0539 (3)0.11302 (15)0.0600 (4)
H10A0.46320.05220.12490.090*
H10B0.31580.06770.07640.090*
H10C0.31370.07130.19270.090*
O70.11484 (13)0.25000.00856 (11)0.0620 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (5)0.0452 (7)0.0285 (6)0.0000.0028 (4)0.000
C20.0258 (6)0.0547 (9)0.0257 (6)0.0000.0002 (5)0.000
C30.0276 (6)0.0578 (9)0.0212 (6)0.0000.0037 (4)0.000
C40.0239 (6)0.0595 (9)0.0251 (6)0.0000.0043 (5)0.000
C50.0229 (5)0.0545 (8)0.0226 (5)0.0000.0023 (4)0.000
C60.0236 (6)0.0498 (8)0.0246 (6)0.0000.0045 (4)0.000
C70.0227 (6)0.0491 (8)0.0371 (7)0.0000.0032 (5)0.000
C80.0327 (7)0.0727 (11)0.0236 (6)0.0000.0052 (5)0.000
C90.0233 (6)0.0678 (10)0.0234 (6)0.0000.0025 (4)0.000
O10.0227 (5)0.0914 (10)0.0407 (6)0.0000.0092 (4)0.000
O20.0261 (5)0.0874 (10)0.0433 (7)0.0000.0024 (4)0.000
O30.0320 (6)0.1391 (16)0.0244 (5)0.0000.0083 (4)0.000
O40.0401 (6)0.1171 (13)0.0247 (5)0.0000.0012 (4)0.000
O50.0266 (5)0.1159 (12)0.0218 (5)0.0000.0026 (4)0.000
O60.0216 (5)0.1258 (13)0.0330 (6)0.0000.0042 (4)0.000
S10.0287 (2)0.0895 (4)0.0254 (2)0.0000.00491 (13)0.000
C100.0550 (8)0.0642 (9)0.0587 (8)0.0010 (7)0.0031 (6)0.0050 (7)
O70.0275 (5)0.1342 (15)0.0238 (5)0.0000.0010 (4)0.000
Geometric parameters (Å, º) top
C1—C61.3895 (18)C8—O41.2095 (19)
C1—C21.3925 (19)C8—O31.3165 (19)
C1—C71.4933 (18)C9—O61.2101 (17)
C2—C31.3876 (19)C9—O51.3131 (17)
C2—H2A0.9300O1—H10.84 (3)
C3—C41.3952 (19)O3—H30.85 (4)
C3—C81.496 (2)O5—H50.86 (3)
C4—C51.4014 (18)S1—O71.5217 (12)
C4—H4A0.9300S1—C10i1.7781 (17)
C5—C61.3918 (18)S1—C101.7781 (17)
C5—C91.4849 (19)C10—H10A0.9600
C6—H6A0.9300C10—H10B0.9600
C7—O21.2049 (19)C10—H10C0.9600
C7—O11.3277 (19)
C6—C1—C2119.26 (12)O1—C7—C1112.08 (12)
C6—C1—C7121.50 (12)O4—C8—O3124.03 (14)
C2—C1—C7119.24 (12)O4—C8—C3123.31 (15)
C3—C2—C1120.60 (12)O3—C8—C3112.66 (13)
C3—C2—H2A119.7O6—C9—O5122.46 (13)
C1—C2—H2A119.7O6—C9—C5124.08 (13)
C2—C3—C4120.37 (12)O5—C9—C5113.46 (12)
C2—C3—C8117.87 (12)C7—O1—H1110 (2)
C4—C3—C8121.76 (13)C8—O3—H3110 (2)
C3—C4—C5119.08 (12)C9—O5—H5109.3 (19)
C3—C4—H4A120.5O7—S1—C10i104.98 (6)
C5—C4—H4A120.5O7—S1—C10104.98 (6)
C6—C5—C4120.13 (12)C10i—S1—C1097.87 (11)
C6—C5—C9119.97 (12)S1—C10—H10A109.5
C4—C5—C9119.91 (12)S1—C10—H10B109.5
C1—C6—C5120.56 (12)H10A—C10—H10B109.5
C1—C6—H6A119.7S1—C10—H10C109.5
C5—C6—H6A119.7H10A—C10—H10C109.5
O2—C7—O1123.97 (14)H10B—C10—H10C109.5
O2—C7—C1123.94 (14)
C6—C1—C2—C30.0C6—C1—C7—O2180.0
C7—C1—C2—C3180.0C2—C1—C7—O20.0
C1—C2—C3—C40.0C6—C1—C7—O10.0
C1—C2—C3—C8180.0C2—C1—C7—O1180.0
C2—C3—C4—C50.0C2—C3—C8—O40.0
C8—C3—C4—C5180.0C4—C3—C8—O4180.0
C3—C4—C5—C60.0C2—C3—C8—O3180.0
C3—C4—C5—C9180.0C4—C3—C8—O30.0
C2—C1—C6—C50.0C6—C5—C9—O6180.0
C7—C1—C6—C5180.0C4—C5—C9—O60.0
C4—C5—C6—C10.0C6—C5—C9—O50.0
C9—C5—C6—C1180.0C4—C5—C9—O5180.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6ii0.84 (3)1.82 (3)2.6435 (16)165 (3)
O3—H3···O7iii0.85 (4)1.83 (4)2.6593 (17)164 (4)
O5—H5···O7iv0.86 (3)1.73 (3)2.5723 (16)169 (3)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H6O6·C2H6OS
Mr288.27
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)8.7444 (7), 6.8365 (7), 10.7113 (8)
β (°) 96.195 (5)
V3)636.59 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.60 × 0.48 × 0.36
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.851, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
4582, 2007, 1772
Rint0.015
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.112, 1.07
No. of reflections2007
No. of parameters123
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.84 (3)1.82 (3)2.6435 (16)165 (3)
O3—H3···O7ii0.85 (4)1.83 (4)2.6593 (17)164 (4)
O5—H5···O7iii0.86 (3)1.73 (3)2.5723 (16)169 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

Partial support from VIEP-BUAP (14/G/NAT/05) is acknowledged. SB thanks BUAP for diffractometer time.

References

First citationAlmeida Paz, F. A. & Klinowski, J. (2004). Inorg. Chem. 43, 3882–3893.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. International Union of Crystallography Monographs on Crystallography. Oxford University Press.  Google Scholar
First citationHerbstein, F. H., Kapon, M. & Wasserman, S. (1978). Acta Cryst. B34, 1613–1617.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds