inorganic compounds
LiDy(PO3)4
aLaboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bUnité des Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95, 2050 Hammam-Lif, Tunisia
*Correspondence e-mail: mokhtar.ferid@inrst.rnrt.tn
Single crystals of lithium dysprosium polyphosphate, LiDy(PO3)4, were prepared by the method. The atomic arrangement is built up by infinite (PO3)n chains extending along the b axis. Dy3+ and Li+ cations alternate in the middle of four such chains, with Dy⋯Li distances of 3.54 (1) and 3.48 (1) Å. The DyO8 dodecahedra and LiO4 tetrahedra deviate significantly from the ideal geometry. Both Dy and Li occupy special positions (Wyckoff position 4e, 2).
Related literature
For related literature, see: Averbuch-Pouchot & Bagieu Beucher (1987); Ben Zarkouna et al. (2005; 2007); Ben Zarkouna & Driss (2004); Durif (1995); Ettis et al. (2006); Férid (2006); Hashimoto et al. (1991); Hong (1975); Horchani et al. (2003); Liu & Li (1983); Chehimi-Moumen & Férid (2007); Koizumi (1976); Yamada et al. (1974).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808016875/fi2064sup1.cif
contains datablocks I, lidy. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016875/fi2064Isup2.hkl
A mixture of Li2CO3 (2 g), Dy2O3 (0.5 g) and H3PO4 (85%, 17 ml), were mixed in a vitreous carbon crucible and preheated progressively to 473 K four 2 h. The temperature was then raised and kept at 600 K for 15 days. Colourless single crystals of LiDy(PO3)4 were isolated from the reaction mixture by washing with hot water.
The distances between dysprosium atoms and the highest peak and the deepest hole are respectively, 1.39 Å and 0.78 Å.
Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).LiDy(PO3)4 | F(000) = 900 |
Mr = 485.32 | Dx = 3.646 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1631 reflections |
a = 16.269 (1) Å | θ = 0.7–27.9° |
b = 7.0236 (3) Å | µ = 9.24 mm−1 |
c = 9.5781 (8) Å | T = 295 K |
β = 126.106 (3)° | Block, colourless |
V = 884.24 (10) Å3 | 0.10 × 0.09 × 0.08 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1021 independent reflections |
Radiation source: fine-focus sealed tube | 858 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.080 |
ϕ & ω scans | θmax = 27.7°, θmin = 3.6° |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | h = −21→20 |
Tmin = 0.42, Tmax = 0.45 | k = −9→7 |
3313 measured reflections | l = −12→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.038 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max < 0.001 |
1021 reflections | Δρmax = 2.26 e Å−3 |
83 parameters | Δρmin = −2.13 e Å−3 |
LiDy(PO3)4 | V = 884.24 (10) Å3 |
Mr = 485.32 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.269 (1) Å | µ = 9.24 mm−1 |
b = 7.0236 (3) Å | T = 295 K |
c = 9.5781 (8) Å | 0.10 × 0.09 × 0.08 mm |
β = 126.106 (3)° |
Nonius KappaCCD diffractometer | 1021 independent reflections |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | 858 reflections with I > 2σ(I) |
Tmin = 0.42, Tmax = 0.45 | Rint = 0.080 |
3313 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 83 parameters |
wR(F2) = 0.087 | 0 restraints |
S = 0.95 | Δρmax = 2.26 e Å−3 |
1021 reflections | Δρmin = −2.13 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.5000 | 0.79714 (6) | 0.7500 | 0.01295 (18) | |
P1 | 0.36225 (14) | 0.5523 (2) | 0.8849 (2) | 0.0108 (4) | |
P2 | 0.35333 (14) | 0.1513 (3) | 0.8039 (2) | 0.0124 (4) | |
O1 | 0.3870 (4) | 0.7158 (6) | 0.8178 (7) | 0.0148 (11) | |
O2 | 0.4353 (4) | 0.5025 (7) | 1.0727 (6) | 0.0142 (10) | |
O3 | 0.2555 (4) | 0.5780 (7) | 0.8535 (7) | 0.0141 (11) | |
O4 | 0.3421 (4) | 0.3778 (7) | 0.7655 (6) | 0.0169 (11) | |
O5 | 0.4287 (4) | 0.0852 (7) | 0.7730 (7) | 0.0147 (10) | |
O6 | 0.3726 (4) | 0.1159 (6) | 0.9727 (6) | 0.0180 (12) | |
Li | 0.5000 | 0.292 (2) | 0.7500 | 0.012 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.0130 (3) | 0.0101 (3) | 0.0150 (3) | 0.000 | 0.0078 (2) | 0.000 |
P1 | 0.0103 (9) | 0.0098 (9) | 0.0115 (9) | 0.0003 (6) | 0.0059 (8) | −0.0008 (6) |
P2 | 0.0106 (10) | 0.0115 (9) | 0.0123 (9) | −0.0008 (7) | 0.0053 (8) | −0.0007 (7) |
O1 | 0.016 (3) | 0.013 (3) | 0.014 (3) | −0.002 (2) | 0.008 (2) | 0.0012 (19) |
O2 | 0.008 (3) | 0.014 (2) | 0.016 (3) | −0.0022 (19) | 0.004 (2) | 0.001 (2) |
O3 | 0.007 (3) | 0.017 (3) | 0.018 (3) | 0.0056 (19) | 0.007 (2) | 0.006 (2) |
O4 | 0.023 (3) | 0.012 (3) | 0.012 (2) | 0.004 (2) | 0.008 (2) | 0.0057 (19) |
O5 | 0.015 (3) | 0.016 (2) | 0.020 (3) | 0.0014 (19) | 0.014 (2) | −0.0011 (19) |
O6 | 0.027 (3) | 0.008 (2) | 0.019 (3) | −0.003 (2) | 0.013 (3) | −0.0008 (19) |
Li | 0.015 (9) | 0.004 (8) | 0.023 (9) | 0.000 | 0.015 (8) | 0.000 |
Dy1—O6i | 2.288 (5) | P2—O3vi | 1.589 (5) |
Dy1—O6ii | 2.288 (5) | P2—O4 | 1.619 (5) |
Dy1—O1 | 2.352 (5) | P2—Li | 2.896 (5) |
Dy1—O1iii | 2.352 (5) | O2—Lii | 1.992 (11) |
Dy1—O5iv | 2.406 (5) | O2—Dy1i | 2.513 (5) |
Dy1—O5v | 2.406 (5) | O3—P2vii | 1.589 (5) |
Dy1—O2ii | 2.513 (5) | O5—Li | 1.951 (11) |
Dy1—O2i | 2.513 (5) | O5—Dy1viii | 2.406 (5) |
Dy1—Liv | 3.476 (14) | O6—Dy1i | 2.288 (5) |
Dy1—Li | 3.548 (14) | Li—O5iii | 1.951 (11) |
P1—O1 | 1.483 (5) | Li—O2i | 1.992 (11) |
P1—O2 | 1.500 (5) | Li—O2ii | 1.992 (11) |
P1—O4 | 1.573 (5) | Li—P2iii | 2.896 (5) |
P1—O3 | 1.589 (5) | Li—P1i | 3.035 (5) |
P1—Lii | 3.035 (5) | Li—P1ii | 3.035 (5) |
P2—O6 | 1.475 (5) | Li—Dy1viii | 3.476 (14) |
P2—O5 | 1.495 (5) | ||
O6i—Dy1—O6ii | 149.0 (2) | O3vi—P2—O4 | 100.9 (3) |
O6i—Dy1—O1 | 93.73 (18) | O6—P2—Li | 126.0 (2) |
O6ii—Dy1—O1 | 93.71 (19) | O3vi—P2—Li | 121.1 (2) |
O6i—Dy1—O1iii | 93.71 (19) | O4—P2—Li | 67.6 (3) |
O6ii—Dy1—O1iii | 93.73 (18) | P1—O1—Dy1 | 139.8 (3) |
O1—Dy1—O1iii | 151.9 (2) | P1—O2—Lii | 120.0 (4) |
O6i—Dy1—O5iv | 74.10 (17) | P1—O2—Dy1i | 136.6 (3) |
O6ii—Dy1—O5iv | 79.93 (18) | Lii—O2—Dy1i | 103.3 (3) |
O1—Dy1—O5iv | 136.63 (17) | P1—O3—P2vii | 134.3 (4) |
O1iii—Dy1—O5iv | 71.43 (16) | P1—O4—P2 | 130.8 (3) |
O6i—Dy1—O5v | 79.93 (18) | P2—O5—Li | 113.7 (4) |
O6ii—Dy1—O5v | 74.10 (17) | P2—O5—Dy1viii | 140.9 (3) |
O1—Dy1—O5v | 71.43 (16) | Li—O5—Dy1viii | 105.4 (3) |
O1iii—Dy1—O5v | 136.63 (17) | P2—O6—Dy1i | 133.6 (3) |
O5iv—Dy1—O5v | 65.5 (2) | O5—Li—O5iii | 83.7 (6) |
O6i—Dy1—O2ii | 137.74 (17) | O5—Li—O2i | 119.6 (2) |
O6ii—Dy1—O2ii | 72.95 (15) | O5iii—Li—O2i | 125.8 (2) |
O1—Dy1—O2ii | 84.22 (17) | O5—Li—O2ii | 125.8 (2) |
O1iii—Dy1—O2ii | 72.18 (16) | O5iii—Li—O2ii | 119.6 (2) |
O5iv—Dy1—O2ii | 132.43 (17) | O2i—Li—O2ii | 87.2 (6) |
O5v—Dy1—O2ii | 137.20 (17) | O5—Li—P2 | 28.19 (15) |
O6i—Dy1—O2i | 72.95 (15) | O5iii—Li—P2 | 111.9 (5) |
O6ii—Dy1—O2i | 137.74 (17) | O2i—Li—P2 | 99.89 (18) |
O1—Dy1—O2i | 72.18 (16) | O2ii—Li—P2 | 108.8 (2) |
O1iii—Dy1—O2i | 84.22 (17) | O5—Li—P2iii | 111.9 (5) |
O5iv—Dy1—O2i | 137.20 (17) | O5iii—Li—P2iii | 28.19 (15) |
O5v—Dy1—O2i | 132.43 (17) | O2i—Li—P2iii | 108.8 (2) |
O2ii—Dy1—O2i | 66.2 (2) | O2ii—Li—P2iii | 99.89 (18) |
O6i—Dy1—Liv | 74.52 (12) | P2—Li—P2iii | 140.1 (5) |
O6ii—Dy1—Liv | 74.52 (12) | O5—Li—P1i | 102.86 (18) |
O1—Dy1—Liv | 104.06 (11) | O5iii—Li—P1i | 108.3 (2) |
O1iii—Dy1—Liv | 104.06 (11) | O2i—Li—P1i | 25.34 (15) |
O5iv—Dy1—Liv | 32.77 (12) | O2ii—Li—P1i | 112.5 (5) |
O5v—Dy1—Liv | 32.77 (12) | P2—Li—P1i | 92.53 (5) |
O2ii—Dy1—Liv | 146.88 (11) | P2iii—Li—P1i | 101.64 (5) |
O2i—Dy1—Liv | 146.88 (11) | O5—Li—P1ii | 108.3 (2) |
O6i—Dy1—Li | 105.48 (12) | O5iii—Li—P1ii | 102.86 (18) |
O6ii—Dy1—Li | 105.48 (12) | O2i—Li—P1ii | 112.5 (5) |
O1—Dy1—Li | 75.94 (11) | O2ii—Li—P1ii | 25.34 (15) |
O1iii—Dy1—Li | 75.94 (11) | P2—Li—P1ii | 101.64 (5) |
O5iv—Dy1—Li | 147.23 (12) | P2iii—Li—P1ii | 92.53 (5) |
O5v—Dy1—Li | 147.23 (12) | P1i—Li—P1ii | 137.8 (5) |
O2ii—Dy1—Li | 33.12 (11) | O5—Li—Dy1viii | 41.9 (3) |
O2i—Dy1—Li | 33.12 (11) | O5iii—Li—Dy1viii | 41.9 (3) |
Liv—Dy1—Li | 180.000 (5) | O2i—Li—Dy1viii | 136.4 (3) |
O1—P1—O2 | 118.3 (3) | O2ii—Li—Dy1viii | 136.4 (3) |
O1—P1—O4 | 106.4 (3) | P2—Li—Dy1viii | 70.0 (3) |
O2—P1—O4 | 111.6 (3) | P2iii—Li—Dy1viii | 70.0 (3) |
O1—P1—O3 | 112.1 (3) | P1i—Li—Dy1viii | 111.1 (2) |
O2—P1—O3 | 105.0 (3) | P1ii—Li—Dy1viii | 111.1 (2) |
O4—P1—O3 | 102.4 (3) | O5—Li—Dy1 | 138.1 (3) |
O1—P1—Lii | 90.9 (3) | O5iii—Li—Dy1 | 138.1 (3) |
O4—P1—Lii | 144.5 (3) | O2i—Li—Dy1 | 43.6 (3) |
O3—P1—Lii | 99.2 (2) | O2ii—Li—Dy1 | 43.6 (3) |
O6—P2—O5 | 119.7 (3) | P2—Li—Dy1 | 110.0 (3) |
O6—P2—O3vi | 112.5 (3) | P2iii—Li—Dy1 | 110.0 (3) |
O5—P2—O3vi | 107.3 (3) | P1i—Li—Dy1 | 68.9 (2) |
O6—P2—O4 | 109.7 (3) | P1ii—Li—Dy1 | 68.9 (2) |
O5—P2—O4 | 104.9 (3) | Dy1viii—Li—Dy1 | 180.0 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1, z−1/2; (iii) −x+1, y, −z+3/2; (iv) −x+1, y+1, −z+3/2; (v) x, y+1, z; (vi) −x+1/2, y−1/2, −z+3/2; (vii) −x+1/2, y+1/2, −z+3/2; (viii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | LiDy(PO3)4 |
Mr | 485.32 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 16.269 (1), 7.0236 (3), 9.5781 (8) |
β (°) | 126.106 (3) |
V (Å3) | 884.24 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.24 |
Crystal size (mm) | 0.10 × 0.09 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Analytical (de Meulenaer & Tompa, 1965) |
Tmin, Tmax | 0.42, 0.45 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3313, 1021, 858 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.655 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.087, 0.95 |
No. of reflections | 1021 |
No. of parameters | 83 |
Δρmax, Δρmin (e Å−3) | 2.26, −2.13 |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Acknowledgements
This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.
References
Averbuch-Pouchot, M. T. & Bagieu Beucher, M. (1987). Z. Anorg. Allg. Chem. 552, 171–180. CrossRef CAS Web of Science Google Scholar
Ben Zarkouna, E. & Driss, A. (2004). Acta Cryst. E60, i102–i104. Web of Science CrossRef IUCr Journals Google Scholar
Ben Zarkouna, E., Férid, M. & Driss, A. (2005). Mater. Res. Bull. 40, 198–1992. Web of Science CrossRef Google Scholar
Ben Zarkouna, E., Horchani-Naifer, K., Férid, M. & Driss, A. (2007). Acta Cryst. E63, i1–i2. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chehimi-Moumen, F. & Férid, M. (2007). Acta Cryst. E63, i129–i130. Web of Science CrossRef IUCr Journals Google Scholar
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press. Google Scholar
Ettis, H., Naili, H. & Mhiri, T. (2006). J. Solid State Chem. 179, 3107–3113. Web of Science CrossRef CAS Google Scholar
Férid, M. (2006). Etude des propriétés cristallochimiques et physiques de phosphates condensés de terres rares. Paris: Publibook. Google Scholar
Hashimoto, N., Takada, Y., Sato, K. & Ibuki, S. (1991). J. Lumin. 48–49, 893–897. CrossRef CAS Web of Science Google Scholar
Hong, H. Y. P. (1975). Mater. Res. Bull. 10, 635–640. CrossRef CAS Web of Science Google Scholar
Horchani, K., Gâcon, J. C., Férid, M., Trabelsi-Ayadi, M., Krachni, G. K. & Liu, G. K. (2003). Opt. Mater. 24, 169–174. Web of Science CrossRef CAS Google Scholar
Koizumi, H. (1976). Acta Cryst. B32, 266–268. CrossRef CAS IUCr Journals Web of Science Google Scholar
Liu, J.-C. & Li, D.-Y. (1983). Acta Phys. Sinica, 32, 786–790. CAS Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, T., Otsuka, K. & Nakano, J. (1974). J. Appl. Phys. 45, 5096–5097. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Condensed phosphates of rare earth and monovalent cations of general formula MILn(PO3)4 have attracted large interest in the literature of the last three decades due to their possible application as phosphors and laser materials (Yamada et al., 1974; Hashimoto et al., 1991; Horchani et al., 2003).
In order to enrich the chemistry of this compound family, we have successfully synthesized single crystals of lithium dysprosium polyphosphate and investigated its crystal structure.
Structural studies reported for lithium lanthanide polyphosphates LiLn(PO3)4, Ln = Nd (Hong, 1975, Koizumi, 1976), Er (Liu et al., 1983, Ben Zarkouna et al., 2005),Yb (Ben Zarkouna et al., 2004), Gd (Ettis et al., 2006), Tb (Ben Zarkouna et al., 2007), showed that all these compounds crystallize in space group C2/c and have similar unit-cell parameters. However, it was reported that the lithium atom is located in the (4a) site in LiNd(PO3)4 (Hong, 1975) and LiEr(PO3)4 (Liu et al., 1983) and in the (4 e) site in the remaining structures. LiDy(PO3)4 is found to be isotypic with the latter group LiLn(PO3)4 previously reported. The corresponding asymmetric unit (Fig. 1) is formed by dysprosium and lithium atoms, both located in the (4 e) site, and two PO4 tetrahedra with all atoms in general positions.
These tetrahedra share common corners yielding infinite chains, of four tetrahedra period, extending along the 21 screw axes in the b direction. Four such chains cross the unit cell (Fig. 2).
The polyphosphate chains display two type of distances, P—O terminal ranging from 1.475 (5) to 1.500 (5)Å and P—O bridging, noticeably longer, ranging from 1.573 (5) to 1.619 (5) Å. These distances are comparable with those reported for other condensed phosphates (Durif, 1995; Averbuch-Pouchot & Bagieu Beucher, 1987; Chehimi-Moumen & Férid, 2007; Férid, 2006, Ben Zarkouna et al., 2007).
Dy3+ and Li+ cations lie alternatingly on the two-fold axis in the middle of four polyphosphate chains, with Dy—Li distances of 3.55 (1) and 3.48 (1) Å. They are coordinated by eight and four external oxygen atoms, respectively. The resulting DyO8 dodecahedra and LiO4 tetrahedra are considerably distorted (Figure 3). The Dy—O and Li—O distances range from 2.288 (5) to 2.513 (5)Å and 1.95 (1) to 1.99 (1)Å respectively. The DyO8 dodecahedra share corners and edges with neighbouring LiO4 (Fig. 3) and PO4 tetrahedra building a three dimensional network (Fig. 4). It can be noted that, in the present arrangement, the DyO8 dodecahedra are isolated from each other, the shortest Dy—Dy distance is 5.563 (5) Å.