metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-aqua-di­aqua­(μ3-N′-carb­oxy­methyl­ethylenedi­amine-N,N,N′-tri­acetato)oxidopotassium(I)vanadium(IV)]

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

(Received 14 May 2008; accepted 5 June 2008; online 7 June 2008)

In the crystal structure of the title compound, [KV(C10H13N2O8)O(H2O)3]n, the VIV ion adopts a distorted octa­hedral geometry, coordinated by one oxide group, two N and three carboxylate O atoms from the same N′-carboxy­methyl­ethyl­ene­diamine-N,N,N′-triacetate (HEDTA) ligand. The potassium ion is hepta­coordinated by two water mol­ecules, two bridging water mol­ecules and three carboxylate O atoms from three neighbouring HEDTA ligands. The HEDTA ligands and some of the water mol­ecules act as bridges, linking the compound into a three-dimensional architecture via 21 screw, c-glide, translation and inversion symmetry operators. Meanwhile, three types of O—H⋯O hydrogen bonds provide an additional stabilization of the three-dimensional architecture.

Related literature

For related literature, see: Crans et al. (2004[Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev. 104, 849-902.]); Khanra et al. (2007[Khanra, S., Kloth, M., Mansaray, H., Muryn, C. A., Tuna, F., Sanudo, E. C., Helliwell, M., McInnes, E. J. L. & Winpenny, R. E. P. (2007). Angew. Chem. Int. Ed. 46, 5568-5571.]); Tsuchida et al. (1999[Tsuchida, E., Oyaizu, K., Listiani Dewi, E., Imai, T. & Anson, F. C. (1999). Inorg. Chem. 38, 3704-3708.]).

[Scheme 1]

Experimental

Crystal data
  • [KV(C10H13N2O8)O(H2O)3]

  • Mr = 449.31

  • Monoclinic, P 21 /c

  • a = 6.6701 (13) Å

  • b = 13.618 (3) Å

  • c = 18.693 (4) Å

  • β = 96.150 (2)°

  • V = 1688.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.714, Tmax = 0.840

  • 6813 measured reflections

  • 2957 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.07

  • 2957 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O3i 0.82 1.75 2.542 (3) 162
O12—H12B⋯O11ii 0.82 2.03 2.802 (3) 157
O11—H11B⋯O4iii 0.82 2.17 2.960 (3) 162
O10—H10B⋯O6iii 0.82 2.20 2.987 (3) 161
O12—H12A⋯O5iv 0.82 1.99 2.804 (3) 169
O11—H11A⋯O7ii 0.82 1.99 2.801 (3) 169
O10—H10A⋯O12v 0.82 2.26 2.983 (3) 147
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x-1, y, z; (v) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The vanadium complexes have been attracted great attention because of their versatile properties including biological activities(Crans et al., 2004), magnetic property(Khanra et al., 2007), catalytic abilities (Tsuchida et al., 1999) and so on. Especially, we are interested in the protein tyrosine phosphatase 1B (PTP1B) inhibition activity of vanadium compounds. Thus, the title compound (I) was synthesized and its crystal structure is reported here.

The X-ray crystallographic analysis shows that there are two metal ion centres in the asymmetric unit of the title compound(Fig 1). VIV adopts a six coordinated geometry consisting of a O atom(O1) from vanadyl, two N and three carboxyl O atoms(O2, O4 and O6) from same symmetric edta ligand while potassium is hepta-coordinated by two water molecules, two bridging water molecules and three carboxyl O atoms (O3, O5 and O9) respectively from three neighbouring edta ligands with different symmetry. Each edta ligand acts as a bridge simultaneously coordinating to three neighbouring K+ ions while coordinating to one vanadium. Neighbouring K+ ions are bridged through two coordinated water molecules(O10). As the result of these coordination, the compound is constructed to three-dimensional structure by O9 atom via 21-screw, O3 via c-glide & translation and K1 via inversion & translation(Fig 2). Meanwhile, three types of O—H···O hydrogen bonds (Table 1) take part in the stabilization of the three-dimensional architecture(Fig 2). The first type is the coordination water O atoms (O10, O11 and O12) acting as H donors while carboxyl O atoms(O4, O5, O6 and O7) of edta ligands as acceptors. The second is between coordination water molecules[O12—H12B···O11(-x, 2 - y, 1 - z) and O10—H10A···O12(1 + x, y, z)]. The third type of O8—H8···O3(1 - x, 2 - y, -y) hydrogen bond joins neighbouring edta ligands.

Related literature top

For related literature, see: Crans et al. (2004); Khanra et al. (2007); Tsuchida et al. (1999).

Experimental top

All chemicals were of reagent grade, were commercially available and were used without further purification. H4EDTA(11.69 g, 40 mmol) was added to 100 ml of water and neutralized with 11.20 g (80 mmol) of Potassium carbonate. 6.52 g (40 mmol) of VOSO4 was added to the solution, stirred for 24 h. Evaporation of the solution using a rotary evaporator was concentrated to 20 ml, then the solution with blue flocculent crystals was filtered, The blue crystals were obtained by slow evaporation of the solvent about two days at room temperature.

Refinement top

H atoms attached to C and O(EDTA) atoms of (I) were placed in geometrically idealized positions with Csp3—H = 0.97 and O—H = 0.82Å and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(1.5Ueqfor methyl H). H atoms attached to O(water) atoms of (I) were located from difference Fourier maps and refined with a global Uiso value.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i -x, y + 1/2, -z + 1/2; ii x, -y + 3/2, z - 1/2; iii -x, -y + 2, -z
[Figure 2] Fig. 2. The packing view in the title complex (I).
Poly[µ-aqua-diaqua(µ3-N'-carboxymethylethylenediamine-N,N,N'- triacetato)oxidopotassium(I)vanadium(IV)] top
Crystal data top
[KV(C10H13N2O8)O(H2O)3]F(000) = 924
Mr = 449.31Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3074 reflections
a = 6.6701 (13) Åθ = 2.1–26.6°
b = 13.618 (3) ŵ = 0.90 mm1
c = 18.693 (4) ÅT = 298 K
β = 96.150 (2)°Block, blue
V = 1688.2 (6) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 77
Tmin = 0.714, Tmax = 0.840k = 1616
6813 measured reflectionsl = 1222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.6912P]
where P = (Fo2 + 2Fc2)/3
2957 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[KV(C10H13N2O8)O(H2O)3]V = 1688.2 (6) Å3
Mr = 449.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6701 (13) ŵ = 0.90 mm1
b = 13.618 (3) ÅT = 298 K
c = 18.693 (4) Å0.40 × 0.30 × 0.20 mm
β = 96.150 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2957 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2613 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.840Rint = 0.024
6813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.07Δρmax = 0.33 e Å3
2957 reflectionsΔρmin = 0.22 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.46422 (6)1.03027 (3)0.20517 (2)0.02305 (14)
N10.2470 (3)0.90064 (14)0.21295 (10)0.0229 (4)
N20.2025 (3)1.08521 (14)0.13790 (10)0.0226 (4)
C10.4610 (4)0.85480 (18)0.11714 (13)0.0268 (5)
C20.3056 (4)0.82187 (17)0.16472 (13)0.0272 (5)
H2A0.18670.79940.13480.033*
H2B0.35890.76680.19360.033*
C30.4930 (4)0.88638 (17)0.31905 (13)0.0274 (6)
C40.2772 (4)0.86957 (19)0.28900 (13)0.0288 (6)
H4A0.24420.80050.29260.035*
H4B0.18830.90670.31670.035*
C50.0432 (4)0.93920 (17)0.18987 (13)0.0260 (5)
H5A0.00440.97780.22830.031*
H5B0.04990.88520.17890.031*
C60.0520 (4)1.00233 (18)0.12396 (13)0.0269 (5)
H6A0.08061.02960.10950.032*
H6B0.08970.96200.08470.032*
C70.1193 (4)1.16469 (18)0.18111 (13)0.0281 (6)
H7A0.02631.16600.17060.034*
H7B0.17111.22750.16690.034*
C80.1722 (4)1.15125 (17)0.26067 (14)0.0296 (6)
C90.2569 (4)1.12454 (18)0.06851 (13)0.0261 (5)
H9A0.31201.07150.04200.031*
H9B0.36221.17330.07850.031*
C100.0834 (4)1.17089 (18)0.02109 (13)0.0284 (6)
K10.31886 (9)0.85434 (4)0.49345 (3)0.03673 (17)
O10.6281 (3)1.11296 (13)0.19480 (10)0.0388 (5)
O20.5346 (3)0.94067 (12)0.12620 (9)0.0288 (4)
O30.5115 (3)0.79597 (13)0.07183 (10)0.0363 (4)
O40.5988 (3)0.94463 (12)0.28376 (9)0.0305 (4)
O50.5578 (3)0.84570 (13)0.37597 (10)0.0365 (4)
O60.3143 (3)1.08920 (12)0.28047 (9)0.0315 (4)
O70.0813 (3)1.19822 (14)0.30238 (10)0.0454 (5)
O80.1269 (3)1.20678 (14)0.04052 (9)0.0370 (4)
H80.24531.19520.04550.056*
O90.0876 (3)1.17595 (15)0.03675 (10)0.0412 (5)
O100.6764 (3)0.94372 (15)0.56121 (11)0.0502 (5)
H10A0.77310.92050.54340.075*
H10B0.68860.92150.60220.075*
O110.1732 (3)0.91295 (14)0.61935 (10)0.0474 (5)
H11A0.10170.87430.63870.071*
H11B0.22790.94420.65350.071*
O120.0659 (3)0.90505 (16)0.44337 (13)0.0578 (6)
H12A0.16760.88280.42050.087*
H12B0.06260.96150.42820.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0205 (2)0.0245 (2)0.0242 (2)0.00226 (16)0.00252 (16)0.00034 (16)
N10.0218 (11)0.0252 (10)0.0219 (10)0.0000 (8)0.0039 (8)0.0015 (8)
N20.0232 (11)0.0233 (10)0.0221 (10)0.0013 (8)0.0054 (8)0.0025 (8)
C10.0241 (13)0.0295 (13)0.0264 (13)0.0031 (10)0.0010 (10)0.0001 (11)
C20.0270 (13)0.0224 (12)0.0325 (14)0.0007 (10)0.0042 (11)0.0018 (10)
C30.0305 (14)0.0238 (12)0.0278 (14)0.0042 (11)0.0029 (11)0.0005 (11)
C40.0305 (14)0.0316 (13)0.0251 (13)0.0019 (11)0.0062 (11)0.0051 (11)
C50.0197 (12)0.0272 (12)0.0316 (14)0.0025 (10)0.0044 (10)0.0008 (11)
C60.0218 (13)0.0274 (12)0.0306 (13)0.0036 (10)0.0017 (10)0.0005 (11)
C70.0272 (14)0.0266 (13)0.0314 (14)0.0028 (10)0.0072 (11)0.0028 (10)
C80.0315 (15)0.0262 (13)0.0328 (14)0.0052 (11)0.0104 (11)0.0047 (11)
C90.0273 (13)0.0277 (12)0.0241 (12)0.0005 (10)0.0062 (10)0.0016 (10)
C100.0296 (15)0.0282 (13)0.0269 (13)0.0011 (11)0.0008 (11)0.0002 (10)
K10.0338 (3)0.0413 (3)0.0348 (3)0.0010 (3)0.0025 (3)0.0065 (3)
O10.0319 (11)0.0358 (10)0.0487 (12)0.0090 (8)0.0045 (9)0.0002 (9)
O20.0296 (10)0.0285 (9)0.0300 (9)0.0030 (8)0.0107 (8)0.0029 (7)
O30.0370 (11)0.0372 (10)0.0363 (10)0.0014 (8)0.0108 (8)0.0116 (9)
O40.0261 (10)0.0341 (9)0.0306 (10)0.0011 (8)0.0002 (7)0.0061 (8)
O50.0387 (11)0.0381 (10)0.0311 (10)0.0021 (8)0.0033 (8)0.0072 (8)
O60.0385 (11)0.0340 (9)0.0226 (9)0.0048 (8)0.0055 (8)0.0027 (7)
O70.0574 (13)0.0446 (11)0.0372 (11)0.0087 (10)0.0187 (10)0.0100 (9)
O80.0336 (11)0.0506 (12)0.0272 (10)0.0050 (9)0.0050 (8)0.0086 (9)
O90.0268 (11)0.0532 (12)0.0443 (12)0.0067 (9)0.0071 (9)0.0162 (9)
O100.0508 (13)0.0523 (12)0.0461 (12)0.0007 (10)0.0017 (10)0.0093 (10)
O110.0568 (14)0.0454 (12)0.0398 (12)0.0081 (10)0.0037 (10)0.0008 (9)
O120.0492 (14)0.0465 (12)0.0727 (16)0.0020 (10)0.0155 (11)0.0145 (11)
Geometric parameters (Å, º) top
V1—O11.5955 (18)C7—H7A0.9700
V1—O61.9815 (17)C7—H7B0.9700
V1—O22.0092 (16)C8—O71.219 (3)
V1—O42.0104 (17)C8—O61.294 (3)
V1—N22.172 (2)C9—C101.518 (3)
V1—N12.298 (2)C9—H9A0.9700
N1—C41.476 (3)C9—H9B0.9700
N1—C51.478 (3)C10—O91.210 (3)
N1—C21.481 (3)C10—O81.312 (3)
N2—C91.484 (3)K1—O122.725 (2)
N2—C71.493 (3)K1—O3i2.7539 (19)
N2—C61.514 (3)K1—O112.758 (2)
C1—O31.238 (3)K1—O102.851 (2)
C1—O21.272 (3)K1—O52.851 (2)
C1—C21.505 (3)K1—O9ii2.900 (2)
C2—H2A0.9700K1—O10iii2.935 (2)
C2—H2B0.9700K1—K1iii4.6380 (14)
C3—O51.236 (3)K1—H12B3.0701
C3—O41.289 (3)O3—K1iv2.7539 (19)
C3—C41.505 (4)O8—H80.8200
C4—H4A0.9700O9—K1v2.900 (2)
C4—H4B0.9700O10—K1iii2.935 (2)
C5—C61.509 (3)O10—H10A0.8199
C5—H5A0.9700O10—H10B0.8200
C5—H5B0.9700O11—H11A0.8200
C6—H6A0.9700O11—H11B0.8200
C6—H6B0.9700O12—H12A0.8200
C7—C81.502 (4)O12—H12B0.8200
O1—V1—O6101.82 (9)O6—C8—C7116.7 (2)
O1—V1—O297.02 (8)N2—C9—C10114.7 (2)
O6—V1—O2160.61 (7)N2—C9—H9A108.6
O1—V1—O4103.90 (9)C10—C9—H9A108.6
O6—V1—O486.31 (7)N2—C9—H9B108.6
O2—V1—O493.63 (7)C10—C9—H9B108.6
O1—V1—N2101.83 (9)H9A—C9—H9B107.6
O6—V1—N280.59 (7)O9—C10—O8119.6 (2)
O2—V1—N291.17 (7)O9—C10—C9124.2 (2)
O4—V1—N2153.01 (7)O8—C10—C9116.2 (2)
O1—V1—N1174.01 (9)O12—K1—O3i137.71 (6)
O6—V1—N184.06 (7)O12—K1—O1179.34 (7)
O2—V1—N177.21 (7)O3i—K1—O1187.02 (6)
O4—V1—N175.13 (7)O12—K1—O10139.18 (7)
N2—V1—N180.10 (7)O3i—K1—O1076.15 (6)
C4—N1—C5114.18 (18)O11—K1—O1081.47 (7)
C4—N1—C2111.16 (19)O12—K1—O5109.24 (7)
C5—N1—C2111.99 (19)O3i—K1—O596.41 (5)
C4—N1—V1105.01 (14)O11—K1—O5161.12 (6)
C5—N1—V1105.97 (13)O10—K1—O581.36 (6)
C2—N1—V1107.95 (14)O12—K1—O9ii71.57 (6)
C9—N2—C7110.56 (18)O3i—K1—O9ii71.89 (6)
C9—N2—C6109.77 (18)O11—K1—O9ii100.37 (6)
C7—N2—C6110.82 (18)O10—K1—O9ii147.80 (6)
C9—N2—V1111.95 (14)O5—K1—O9ii98.34 (5)
C7—N2—V1105.00 (14)O12—K1—O10iii71.81 (6)
C6—N2—V1108.65 (14)O3i—K1—O10iii149.29 (6)
O3—C1—O2123.8 (2)O11—K1—O10iii92.51 (6)
O3—C1—C2117.8 (2)O10—K1—O10iii73.43 (7)
O2—C1—C2118.4 (2)O5—K1—O10iii75.09 (6)
N1—C2—C1112.82 (19)O9ii—K1—O10iii137.93 (6)
N1—C2—H2A109.0O12—K1—K1iii105.52 (5)
C1—C2—H2A109.0O3i—K1—K1iii113.39 (5)
N1—C2—H2B109.0O11—K1—K1iii86.36 (5)
C1—C2—H2B109.0O10—K1—K1iii37.34 (4)
H2A—C2—H2B107.8O5—K1—K1iii75.22 (4)
O5—C3—O4123.8 (2)O9ii—K1—K1iii171.84 (5)
O5—C3—C4119.0 (2)O10iii—K1—K1iii36.09 (4)
O4—C3—C4117.2 (2)O12—K1—H12B14.8
N1—C4—C3110.02 (19)O3i—K1—H12B152.2
N1—C4—H4A109.7O11—K1—H12B81.3
C3—C4—H4A109.7O10—K1—H12B126.3
N1—C4—H4B109.7O5—K1—H12B102.8
C3—C4—H4B109.7O9ii—K1—H12B85.4
H4A—C4—H4B108.2O10iii—K1—H12B57.0
N1—C5—C6109.02 (19)K1iii—K1—H12B91.1
N1—C5—H5A109.9C1—O2—V1122.60 (15)
C6—C5—H5A109.9C1—O3—K1iv134.36 (16)
N1—C5—H5B109.9C3—O4—V1120.32 (16)
C6—C5—H5B109.9C3—O5—K1118.15 (16)
H5A—C5—H5B108.3C8—O6—V1118.11 (15)
C5—C6—N2111.54 (19)C10—O8—H8109.5
C5—C6—H6A109.3C10—O9—K1v119.74 (16)
N2—C6—H6A109.3K1—O10—K1iii106.57 (7)
C5—C6—H6B109.3K1—O10—H10A108.2
N2—C6—H6B109.3K1iii—O10—H10A100.5
H6A—C6—H6B108.0K1—O10—H10B104.6
N2—C7—C8112.7 (2)K1iii—O10—H10B131.8
N2—C7—H7A109.1H10A—O10—H10B103.5
C8—C7—H7A109.1K1—O11—H11A117.7
N2—C7—H7B109.1K1—O11—H11B130.3
C8—C7—H7B109.1H11A—O11—H11B102.8
H7A—C7—H7B107.8K1—O12—H12A141.4
O7—C8—O6124.0 (2)K1—O12—H12B107.3
O7—C8—C7119.3 (2)H12A—O12—H12B102.5
O6—V1—N1—C457.66 (15)N2—C7—C8—O7165.0 (2)
O2—V1—N1—C4127.40 (15)N2—C7—C8—O615.1 (3)
O4—V1—N1—C430.08 (14)C7—N2—C9—C1059.1 (3)
N2—V1—N1—C4139.11 (15)C6—N2—C9—C1063.5 (2)
O6—V1—N1—C563.53 (14)V1—N2—C9—C10175.79 (16)
O2—V1—N1—C5111.41 (15)N2—C9—C10—O90.5 (4)
O4—V1—N1—C5151.27 (15)N2—C9—C10—O8179.7 (2)
N2—V1—N1—C517.92 (14)O3—C1—O2—V1175.28 (19)
O6—V1—N1—C2176.33 (15)C2—C1—O2—V13.9 (3)
O2—V1—N1—C28.74 (14)O1—V1—O2—C1171.07 (19)
O4—V1—N1—C288.59 (15)O6—V1—O2—C122.6 (3)
N2—V1—N1—C2102.23 (15)O4—V1—O2—C166.57 (19)
O1—V1—N2—C942.20 (16)N2—V1—O2—C186.86 (19)
O6—V1—N2—C9142.42 (16)N1—V1—O2—C17.28 (18)
O2—V1—N2—C955.22 (15)O2—C1—O3—K1iv150.33 (18)
O4—V1—N2—C9155.57 (16)C2—C1—O3—K1iv30.5 (3)
N1—V1—N2—C9132.03 (15)O5—C3—O4—V1165.98 (18)
O1—V1—N2—C777.80 (15)C4—C3—O4—V112.8 (3)
O6—V1—N2—C722.42 (14)O1—V1—O4—C3161.53 (18)
O2—V1—N2—C7175.22 (14)O6—V1—O4—C360.26 (18)
O4—V1—N2—C784.4 (2)O2—V1—O4—C3100.31 (18)
N1—V1—N2—C7107.97 (14)N2—V1—O4—C30.5 (3)
O1—V1—N2—C6163.60 (15)N1—V1—O4—C324.57 (17)
O6—V1—N2—C696.18 (14)O4—C3—O5—K1131.8 (2)
O2—V1—N2—C666.17 (14)C4—C3—O5—K146.9 (3)
O4—V1—N2—C634.2 (2)O12—K1—O5—C317.34 (19)
N1—V1—N2—C610.63 (14)O3i—K1—O5—C3163.20 (17)
C4—N1—C2—C1124.2 (2)O11—K1—O5—C397.2 (2)
C5—N1—C2—C1106.8 (2)O10—K1—O5—C3121.92 (18)
V1—N1—C2—C19.5 (2)O9ii—K1—O5—C390.64 (18)
O3—C1—C2—N1175.9 (2)O10iii—K1—O5—C346.87 (17)
O2—C1—C2—N14.9 (3)K1iii—K1—O5—C384.25 (17)
C5—N1—C4—C3148.1 (2)O7—C8—O6—V1173.6 (2)
C2—N1—C4—C384.1 (2)C7—C8—O6—V16.3 (3)
V1—N1—C4—C332.4 (2)O1—V1—O6—C883.24 (19)
O5—C3—C4—N1164.2 (2)O2—V1—O6—C882.9 (3)
O4—C3—C4—N117.0 (3)O4—V1—O6—C8173.32 (18)
C4—N1—C5—C6158.6 (2)N2—V1—O6—C817.00 (17)
C2—N1—C5—C673.9 (2)N1—V1—O6—C897.91 (18)
V1—N1—C5—C643.5 (2)O8—C10—O9—K1v41.5 (3)
N1—C5—C6—N257.1 (3)C9—C10—O9—K1v138.70 (19)
C9—N2—C6—C5161.47 (19)O12—K1—O10—K1iii32.58 (13)
C7—N2—C6—C576.1 (2)O3i—K1—O10—K1iii175.77 (8)
V1—N2—C6—C538.7 (2)O11—K1—O10—K1iii95.21 (7)
C9—N2—C7—C8146.5 (2)O5—K1—O10—K1iii76.92 (7)
C6—N2—C7—C891.6 (2)O9ii—K1—O10—K1iii168.86 (8)
V1—N2—C7—C825.6 (2)O10iii—K1—O10—K1iii0.0
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O3vi0.821.752.542 (3)162
O12—H12B···O11vii0.822.032.802 (3)157
O11—H11B···O4iii0.822.172.960 (3)162
O10—H10B···O6iii0.822.202.987 (3)161
O12—H12A···O5viii0.821.992.804 (3)169
O11—H11A···O7vii0.821.992.801 (3)169
O10—H10A···O12ix0.822.262.983 (3)147
Symmetry codes: (iii) x+1, y+2, z+1; (vi) x+1, y+2, z; (vii) x, y+2, z+1; (viii) x1, y, z; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula[KV(C10H13N2O8)O(H2O)3]
Mr449.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.6701 (13), 13.618 (3), 18.693 (4)
β (°) 96.150 (2)
V3)1688.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.714, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
6813, 2957, 2613
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.07
No. of reflections2957
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O3i0.821.752.542 (3)162.1
O12—H12B···O11ii0.822.032.802 (3)156.8
O11—H11B···O4iii0.822.172.960 (3)161.7
O10—H10B···O6iii0.822.202.987 (3)161.1
O12—H12A···O5iv0.821.992.804 (3)169.3
O11—H11A···O7ii0.821.992.801 (3)169.2
O10—H10A···O12v0.822.262.983 (3)146.5
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2006.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev. 104, 849–902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhanra, S., Kloth, M., Mansaray, H., Muryn, C. A., Tuna, F., Sanudo, E. C., Helliwell, M., McInnes, E. J. L. & Winpenny, R. E. P. (2007). Angew. Chem. Int. Ed. 46, 5568–5571.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuchida, E., Oyaizu, K., Listiani Dewi, E., Imai, T. & Anson, F. C. (1999). Inorg. Chem. 38, 3704–3708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds