organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phenyl­diazen­yl)-1-methyl-1,4,5,6-tetra­hydro­pyridine

aInstitute of Pharmaceutical and Toxicological Chemistry, `P.Pratesi', University of Milano, via L. Mangiagalli 25, 20133 Milano, Italy, and bDepartment of Pharmaceutical Chemistry, University of Genova, viale Benedetto XV, 16132 Genova, Italy
*Correspondence e-mail: fiorella.meneghetti@unimi.it

(Received 30 May 2008; accepted 16 June 2008; online 19 June 2008)

The title compound, C12H14ClN3, represents the planar azoenamine tautomer. The benzene ring forms a dihedral angle of 2.5 (1)° with the azoenamine group. Electron delocalization is indicated by the values of the bond lengths in the chain. The tetra­hydro­pyridine ring adopts a half-chair conformation and the dihedral angle between the least-squares plane defined by the five coplanar C atoms and the azoenamine unit is 2.0 (1)°, while the envelope-flap C atom lies out of this plane by 0.579 (2) Å. The mol­ecular packing is governed by van der Waals inter­actions through the stacking of adjacent mol­ecules, resulting in a two-dimensional sheet structure.

Related literature

Aryl­azoenamines are useful templates for the investigation of the role of substituents on the benzene ring in the treatment of aryl­hydrazones with acids (Canu Boido et al., 1993[Canu Boido, C., Boido, V., Sparatore, F., Sparatore, A., Bombieri, G., Benetollo, F., Debbia, E. & Pesce Schito, A. (1993). Il Farmaco, 48, 749-775.]). For related literature, see: Boido Canu et al. (1988[Boido Canu, C., Boido, V., Sparatore, F., Sparatore, A., Susanna, V., Russo, S., Canicola, M. L. & Marmo, E. (1988). Farmaco Ed. Sci. 43, 819-837.]); Sparatore et al. (1990[Sparatore, A., Canu Boido, C., Boido, V., Sparatore, F., Debbia, E. & Pesce Schito, A. (1990). Il Farmaco, 45, 867-877.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClN3

  • Mr = 235.71

  • Triclinic, [P \overline 1]

  • a = 6.251 (2) Å

  • b = 8.483 (3) Å

  • c = 11.824 (4) Å

  • α = 77.590 (10)°

  • β = 78.450 (10)°

  • γ = 87.01 (2)°

  • V = 599.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 (2) K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3028 measured reflections

  • 2893 independent reflections

  • 1803 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections frequency: 120 min intensity decay: <1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.191

  • S = 1.04

  • 2893 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In order to define the influence exerted by the chloro-benzene nucleus on the yields of azoenamines, the hydrazone-hydrazoene tautomerism has been investigated by X-ray analysis of the derivative 1 (Fig. 1). The results could be an useful tool to understand the antimicrobial properties of arylazoenamine compounds (Canu Boido et al., 1993). As this compound could resonate with the amphoionic structure, the X-ray analysis allowed the identification of the tautomer (Fig. 2). The extended conformation of the azoenamine skeleton is characterized by the torsion angles N3—C8—C7—N2 of 179.2 (1)°, C8—C7—N2—N1 of 179.2 (1)°, C7—N2—N1—C5 of 179.0 (1)° and N2—N1—C5—C4 of 176.9 (1)°, indicating the quite coplanarity of the aromatic ring with the azoenamine moiety. This allows a certain degree of electron delocalization, beginning at the phenyl moiety and extending through the double bond, as shown by the shortening of the bond lenghts N2—C7 of 1.361 (4)Å and C8—N3 of 1.361 (4) Å. The half chair conformation of the tetrahydropyridine ring is defined by the puckering parameter of ϕ2=173.3 (1)° and QT=0.426 (4)Å (Cremer & Pople, 1975). The molecular packing is governed by the van der Waals interactions through the stacking of adjacent molecules, resulting in a two-dimesional sheet structure (Fig. 3).

Related literature top

Arylazoenamines are useful templates for the investigation of the role of substituents on the benzene ring in the treatment of arylhydrazones with acids (Canu Boido et al., 1993). For related literature, see: Boido Canu et al., (1988); Sparatore et al., (1990).

For related literature, see: Cremer & Pople (1975).

Experimental top

The title compound derives from the azo-coupling reaction with acids between 2-formyl-1-methylpyrrolidine and p-chlorophenylhydrazine (Canu Boido et al., 1993). Single crystal of 1 were obtained by slow evaporation of an ethanol solution.

Refinement top

All non-H-atoms were refined anisotropically. Hydrogen atoms were introduced at calculated positions, in their described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal parameters (1.2Ueq and 1.5Ueq of the parent carbon atom for aromatic H-atoms and methyls H-atoms, respectively). The methyl H-atoms were placed with the AFIX 33 to prevent the rotational refinement.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Chemical scheme of the two tautomers of 1.
[Figure 2] Fig. 2. : The molecular structure of the title compound, showing atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 3] Fig. 3. : Packing diagram of 1, showing the two-dimensional sheet structure formed by the molecular stacking.
3-(4-Chlorophenyldiazenyl)-1-methyl-1,4,5,6-tetrahydropyridine top
Crystal data top
C12H14ClN3Z = 2
Mr = 235.71F(000) = 248
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.251 (2) ÅCell parameters from 25 reflections
b = 8.483 (3) Åθ = 9–10°
c = 11.824 (4) ŵ = 0.30 mm1
α = 77.59 (1)°T = 293 K
β = 78.45 (1)°Prism, red
γ = 87.01 (2)°0.6 × 0.5 × 0.4 mm
V = 599.9 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 3.9°
Graphite monochromatorh = 88
Non–profiled ω/2θ scansk = 1110
3028 measured reflectionsl = 150
2893 independent reflections3 standard reflections every 120 min
1803 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.117P)2 + 0.0064P]
where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C12H14ClN3γ = 87.01 (2)°
Mr = 235.71V = 599.9 (4) Å3
Triclinic, P1Z = 2
a = 6.251 (2) ÅMo Kα radiation
b = 8.483 (3) ŵ = 0.30 mm1
c = 11.824 (4) ÅT = 293 K
α = 77.59 (1)°0.6 × 0.5 × 0.4 mm
β = 78.45 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
3028 measured reflections3 standard reflections every 120 min
2893 independent reflections intensity decay: <1%
1803 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2893 reflectionsΔρmin = 0.50 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62912 (9)0.77463 (8)0.36467 (7)0.0818 (3)
N10.1713 (3)0.4296 (2)0.18348 (17)0.0586 (5)
N20.2811 (3)0.3554 (2)0.26078 (17)0.0577 (5)
N30.7609 (3)0.1111 (2)0.27394 (19)0.0677 (6)
C10.3925 (3)0.6722 (2)0.3139 (2)0.0592 (6)
C20.0779 (3)0.5151 (3)0.3523 (2)0.0630 (6)
H20.00760.46260.40520.076*
C30.3383 (4)0.6673 (3)0.1976 (2)0.0670 (6)
H30.42740.71750.14590.080*
C40.1496 (4)0.5873 (3)0.1563 (2)0.0631 (6)
H40.11170.58470.07660.076*
C50.0155 (3)0.5106 (2)0.2336 (2)0.0562 (5)
C60.2651 (3)0.5964 (3)0.3933 (2)0.0645 (6)
H60.30470.60020.47280.077*
C70.4609 (3)0.2732 (2)0.2171 (2)0.0585 (6)
C80.5789 (3)0.1961 (3)0.2987 (2)0.0600 (6)
H80.52860.20360.37690.072*
C90.5288 (4)0.2646 (3)0.0908 (2)0.0698 (6)
H9A0.60380.36290.04710.084*
H9B0.40070.25520.05810.084*
C100.6793 (5)0.1200 (4)0.0783 (3)0.0841 (8)
H10A0.59290.02250.10140.101*
H10B0.74920.13020.00390.101*
C110.8530 (4)0.1044 (3)0.1526 (3)0.0780 (8)
H11A0.93060.00270.15040.094*
H11B0.95740.19080.11940.094*
C120.8856 (4)0.0404 (3)0.3635 (3)0.0819 (8)
H12A0.80630.05310.43940.123*
H12B1.02370.09360.34670.123*
H12C0.90960.07240.36370.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0537 (4)0.0776 (5)0.1070 (6)0.0248 (3)0.0085 (3)0.0163 (4)
N10.0465 (9)0.0571 (10)0.0711 (12)0.0101 (7)0.0116 (8)0.0129 (9)
N20.0441 (9)0.0510 (9)0.0756 (12)0.0059 (7)0.0095 (8)0.0111 (8)
N30.0461 (9)0.0618 (11)0.0926 (15)0.0147 (8)0.0137 (10)0.0136 (10)
C10.0427 (10)0.0480 (11)0.0835 (17)0.0082 (8)0.0106 (10)0.0101 (10)
C20.0450 (11)0.0723 (14)0.0733 (16)0.0150 (10)0.0188 (10)0.0154 (11)
C30.0579 (12)0.0606 (13)0.0815 (17)0.0182 (10)0.0213 (12)0.0102 (12)
C40.0609 (13)0.0565 (12)0.0695 (14)0.0132 (10)0.0151 (11)0.0089 (10)
C50.0435 (10)0.0486 (11)0.0755 (15)0.0036 (8)0.0115 (10)0.0116 (10)
C60.0494 (11)0.0736 (14)0.0701 (14)0.0142 (10)0.0117 (10)0.0176 (11)
C70.0439 (10)0.0527 (11)0.0768 (15)0.0064 (9)0.0087 (10)0.0131 (10)
C80.0459 (10)0.0569 (12)0.0748 (14)0.0070 (9)0.0118 (10)0.0101 (10)
C90.0559 (12)0.0736 (15)0.0780 (16)0.0154 (11)0.0117 (11)0.0170 (12)
C100.0721 (16)0.0881 (19)0.096 (2)0.0231 (14)0.0126 (14)0.0356 (16)
C110.0522 (13)0.0751 (16)0.106 (2)0.0177 (11)0.0069 (13)0.0291 (15)
C120.0600 (14)0.0723 (16)0.111 (2)0.0158 (12)0.0264 (14)0.0085 (14)
Geometric parameters (Å, º) top
Cl1—C11.743 (2)C6—H60.9300
N1—N21.289 (3)C7—C81.366 (3)
N1—C51.414 (3)C7—C91.484 (4)
N2—C71.363 (3)C8—H80.9300
N3—C81.331 (3)C9—C101.521 (3)
N3—C111.447 (3)C9—H9A0.9700
N3—C121.448 (3)C9—H9B0.9700
C1—C31.358 (4)C10—C111.512 (4)
C1—C61.383 (3)C10—H10A0.9700
C2—C61.383 (3)C10—H10B0.9700
C2—C51.388 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.385 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.398 (3)C12—H12C0.9600
C4—H40.9300
N2—N1—C5112.81 (19)N3—C8—H8117.8
N1—N2—C7115.1 (2)C7—C8—H8117.8
C8—N3—C11119.8 (2)C7—C9—C10110.2 (2)
C8—N3—C12121.7 (2)C7—C9—H9A109.6
C11—N3—C12118.06 (19)C10—C9—H9A109.6
C3—C1—C6121.5 (2)C7—C9—H9B109.6
C3—C1—Cl1119.29 (18)C10—C9—H9B109.6
C6—C1—Cl1119.2 (2)H9A—C9—H9B108.1
C6—C2—C5121.1 (2)C11—C10—C9112.6 (2)
C6—C2—H2119.5C11—C10—H10A109.1
C5—C2—H2119.5C9—C10—H10A109.1
C1—C3—C4119.7 (2)C11—C10—H10B109.1
C1—C3—H3120.2C9—C10—H10B109.1
C4—C3—H3120.2H10A—C10—H10B107.8
C3—C4—C5120.5 (2)N3—C11—C10111.89 (19)
C3—C4—H4119.7N3—C11—H11A109.2
C5—C4—H4119.7C10—C11—H11A109.2
C2—C5—C4118.33 (19)N3—C11—H11B109.2
C2—C5—N1125.3 (2)C10—C11—H11B109.2
C4—C5—N1116.3 (2)H11A—C11—H11B107.9
C2—C6—C1118.9 (2)N3—C12—H12A109.5
C2—C6—H6120.6N3—C12—H12B109.5
C1—C6—H6120.6H12A—C12—H12B109.5
N2—C7—C8115.1 (2)N3—C12—H12C109.5
N2—C7—C9124.0 (2)H12A—C12—H12C109.5
C8—C7—C9120.91 (19)H12B—C12—H12C109.5
N3—C8—C7124.5 (2)

Experimental details

Crystal data
Chemical formulaC12H14ClN3
Mr235.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.251 (2), 8.483 (3), 11.824 (4)
α, β, γ (°)77.59 (1), 78.45 (1), 87.01 (2)
V3)599.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3028, 2893, 1803
Rint0.014
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.191, 1.04
No. of reflections2893
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.50

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoido Canu, C., Boido, V., Sparatore, F., Sparatore, A., Susanna, V., Russo, S., Canicola, M. L. & Marmo, E. (1988). Farmaco Ed. Sci. 43, 819–837.  CAS Google Scholar
First citationCanu Boido, C., Boido, V., Sparatore, F., Sparatore, A., Bombieri, G., Benetollo, F., Debbia, E. & Pesce Schito, A. (1993). Il Farmaco, 48, 749–775.  CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSparatore, A., Canu Boido, C., Boido, V., Sparatore, F., Debbia, E. & Pesce Schito, A. (1990). Il Farmaco, 45, 867–877.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds