organic compounds
3-(4-Chlorophenyldiazenyl)-1-methyl-1,4,5,6-tetrahydropyridine
aInstitute of Pharmaceutical and Toxicological Chemistry, `P.Pratesi', University of Milano, via L. Mangiagalli 25, 20133 Milano, Italy, and bDepartment of Pharmaceutical Chemistry, University of Genova, viale Benedetto XV, 16132 Genova, Italy
*Correspondence e-mail: fiorella.meneghetti@unimi.it
The title compound, C12H14ClN3, represents the planar azoenamine tautomer. The benzene ring forms a dihedral angle of 2.5 (1)° with the azoenamine group. Electron delocalization is indicated by the values of the bond lengths in the chain. The tetrahydropyridine ring adopts a half-chair conformation and the dihedral angle between the least-squares plane defined by the five coplanar C atoms and the azoenamine unit is 2.0 (1)°, while the envelope-flap C atom lies out of this plane by 0.579 (2) Å. The molecular packing is governed by van der Waals interactions through the stacking of adjacent molecules, resulting in a two-dimensional sheet structure.
Related literature
Arylazoenamines are useful templates for the investigation of the role of substituents on the benzene ring in the treatment of arylhydrazones with acids (Canu Boido et al., 1993). For related literature, see: Boido Canu et al. (1988); Sparatore et al. (1990); Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808018217/fj2123sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018217/fj2123Isup2.hkl
The title compound derives from the azo-coupling reaction with acids between 2-formyl-1-methylpyrrolidine and p-chlorophenylhydrazine (Canu Boido et al., 1993). Single crystal of 1 were obtained by slow evaporation of an ethanol solution.
All non-H-atoms were refined anisotropically. Hydrogen atoms were introduced at calculated positions, in their described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal parameters (1.2Ueq and 1.5Ueq of the parent carbon atom for aromatic H-atoms and methyls H-atoms, respectively). The methyl H-atoms were placed with the AFIX 33 to prevent the rotational refinement.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H14ClN3 | Z = 2 |
Mr = 235.71 | F(000) = 248 |
Triclinic, P1 | Dx = 1.305 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.251 (2) Å | Cell parameters from 25 reflections |
b = 8.483 (3) Å | θ = 9–10° |
c = 11.824 (4) Å | µ = 0.30 mm−1 |
α = 77.59 (1)° | T = 293 K |
β = 78.45 (1)° | Prism, red |
γ = 87.01 (2)° | 0.6 × 0.5 × 0.4 mm |
V = 599.9 (4) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.014 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 3.9° |
Graphite monochromator | h = −8→8 |
Non–profiled ω/2θ scans | k = −11→10 |
3028 measured reflections | l = −15→0 |
2893 independent reflections | 3 standard reflections every 120 min |
1803 reflections with I > 2σ(I) | intensity decay: <1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.191 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.117P)2 + 0.0064P] where P = (Fo2 + 2Fc2)/3 |
2893 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
C12H14ClN3 | γ = 87.01 (2)° |
Mr = 235.71 | V = 599.9 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.251 (2) Å | Mo Kα radiation |
b = 8.483 (3) Å | µ = 0.30 mm−1 |
c = 11.824 (4) Å | T = 293 K |
α = 77.59 (1)° | 0.6 × 0.5 × 0.4 mm |
β = 78.45 (1)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.014 |
3028 measured reflections | 3 standard reflections every 120 min |
2893 independent reflections | intensity decay: <1% |
1803 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.191 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.33 e Å−3 |
2893 reflections | Δρmin = −0.50 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.62912 (9) | 0.77463 (8) | 0.36467 (7) | 0.0818 (3) | |
N1 | 0.1713 (3) | 0.4296 (2) | 0.18348 (17) | 0.0586 (5) | |
N2 | 0.2811 (3) | 0.3554 (2) | 0.26078 (17) | 0.0577 (5) | |
N3 | 0.7609 (3) | 0.1111 (2) | 0.27394 (19) | 0.0677 (6) | |
C1 | −0.3925 (3) | 0.6722 (2) | 0.3139 (2) | 0.0592 (6) | |
C2 | −0.0779 (3) | 0.5151 (3) | 0.3523 (2) | 0.0630 (6) | |
H2 | 0.0076 | 0.4626 | 0.4052 | 0.076* | |
C3 | −0.3383 (4) | 0.6673 (3) | 0.1976 (2) | 0.0670 (6) | |
H3 | −0.4274 | 0.7175 | 0.1459 | 0.080* | |
C4 | −0.1496 (4) | 0.5873 (3) | 0.1563 (2) | 0.0631 (6) | |
H4 | −0.1117 | 0.5847 | 0.0766 | 0.076* | |
C5 | −0.0155 (3) | 0.5106 (2) | 0.2336 (2) | 0.0562 (5) | |
C6 | −0.2651 (3) | 0.5964 (3) | 0.3933 (2) | 0.0645 (6) | |
H6 | −0.3047 | 0.6002 | 0.4728 | 0.077* | |
C7 | 0.4609 (3) | 0.2732 (2) | 0.2171 (2) | 0.0585 (6) | |
C8 | 0.5789 (3) | 0.1961 (3) | 0.2987 (2) | 0.0600 (6) | |
H8 | 0.5286 | 0.2036 | 0.3769 | 0.072* | |
C9 | 0.5288 (4) | 0.2646 (3) | 0.0908 (2) | 0.0698 (6) | |
H9A | 0.6038 | 0.3629 | 0.0471 | 0.084* | |
H9B | 0.4007 | 0.2552 | 0.0581 | 0.084* | |
C10 | 0.6793 (5) | 0.1200 (4) | 0.0783 (3) | 0.0841 (8) | |
H10A | 0.5929 | 0.0225 | 0.1014 | 0.101* | |
H10B | 0.7492 | 0.1302 | −0.0039 | 0.101* | |
C11 | 0.8530 (4) | 0.1044 (3) | 0.1526 (3) | 0.0780 (8) | |
H11A | 0.9306 | 0.0027 | 0.1504 | 0.094* | |
H11B | 0.9574 | 0.1908 | 0.1194 | 0.094* | |
C12 | 0.8856 (4) | 0.0404 (3) | 0.3635 (3) | 0.0819 (8) | |
H12A | 0.8063 | 0.0531 | 0.4394 | 0.123* | |
H12B | 1.0237 | 0.0936 | 0.3467 | 0.123* | |
H12C | 0.9096 | −0.0724 | 0.3637 | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0537 (4) | 0.0776 (5) | 0.1070 (6) | 0.0248 (3) | −0.0085 (3) | −0.0163 (4) |
N1 | 0.0465 (9) | 0.0571 (10) | 0.0711 (12) | 0.0101 (7) | −0.0116 (8) | −0.0129 (9) |
N2 | 0.0441 (9) | 0.0510 (9) | 0.0756 (12) | 0.0059 (7) | −0.0095 (8) | −0.0111 (8) |
N3 | 0.0461 (9) | 0.0618 (11) | 0.0926 (15) | 0.0147 (8) | −0.0137 (10) | −0.0136 (10) |
C1 | 0.0427 (10) | 0.0480 (11) | 0.0835 (17) | 0.0082 (8) | −0.0106 (10) | −0.0101 (10) |
C2 | 0.0450 (11) | 0.0723 (14) | 0.0733 (16) | 0.0150 (10) | −0.0188 (10) | −0.0154 (11) |
C3 | 0.0579 (12) | 0.0606 (13) | 0.0815 (17) | 0.0182 (10) | −0.0213 (12) | −0.0102 (12) |
C4 | 0.0609 (13) | 0.0565 (12) | 0.0695 (14) | 0.0132 (10) | −0.0151 (11) | −0.0089 (10) |
C5 | 0.0435 (10) | 0.0486 (11) | 0.0755 (15) | 0.0036 (8) | −0.0115 (10) | −0.0116 (10) |
C6 | 0.0494 (11) | 0.0736 (14) | 0.0701 (14) | 0.0142 (10) | −0.0117 (10) | −0.0176 (11) |
C7 | 0.0439 (10) | 0.0527 (11) | 0.0768 (15) | 0.0064 (9) | −0.0087 (10) | −0.0131 (10) |
C8 | 0.0459 (10) | 0.0569 (12) | 0.0748 (14) | 0.0070 (9) | −0.0118 (10) | −0.0101 (10) |
C9 | 0.0559 (12) | 0.0736 (15) | 0.0780 (16) | 0.0154 (11) | −0.0117 (11) | −0.0170 (12) |
C10 | 0.0721 (16) | 0.0881 (19) | 0.096 (2) | 0.0231 (14) | −0.0126 (14) | −0.0356 (16) |
C11 | 0.0522 (13) | 0.0751 (16) | 0.106 (2) | 0.0177 (11) | −0.0069 (13) | −0.0291 (15) |
C12 | 0.0600 (14) | 0.0723 (16) | 0.111 (2) | 0.0158 (12) | −0.0264 (14) | −0.0085 (14) |
Cl1—C1 | 1.743 (2) | C6—H6 | 0.9300 |
N1—N2 | 1.289 (3) | C7—C8 | 1.366 (3) |
N1—C5 | 1.414 (3) | C7—C9 | 1.484 (4) |
N2—C7 | 1.363 (3) | C8—H8 | 0.9300 |
N3—C8 | 1.331 (3) | C9—C10 | 1.521 (3) |
N3—C11 | 1.447 (3) | C9—H9A | 0.9700 |
N3—C12 | 1.448 (3) | C9—H9B | 0.9700 |
C1—C3 | 1.358 (4) | C10—C11 | 1.512 (4) |
C1—C6 | 1.383 (3) | C10—H10A | 0.9700 |
C2—C6 | 1.383 (3) | C10—H10B | 0.9700 |
C2—C5 | 1.388 (4) | C11—H11A | 0.9700 |
C2—H2 | 0.9300 | C11—H11B | 0.9700 |
C3—C4 | 1.385 (3) | C12—H12A | 0.9600 |
C3—H3 | 0.9300 | C12—H12B | 0.9600 |
C4—C5 | 1.398 (3) | C12—H12C | 0.9600 |
C4—H4 | 0.9300 | ||
N2—N1—C5 | 112.81 (19) | N3—C8—H8 | 117.8 |
N1—N2—C7 | 115.1 (2) | C7—C8—H8 | 117.8 |
C8—N3—C11 | 119.8 (2) | C7—C9—C10 | 110.2 (2) |
C8—N3—C12 | 121.7 (2) | C7—C9—H9A | 109.6 |
C11—N3—C12 | 118.06 (19) | C10—C9—H9A | 109.6 |
C3—C1—C6 | 121.5 (2) | C7—C9—H9B | 109.6 |
C3—C1—Cl1 | 119.29 (18) | C10—C9—H9B | 109.6 |
C6—C1—Cl1 | 119.2 (2) | H9A—C9—H9B | 108.1 |
C6—C2—C5 | 121.1 (2) | C11—C10—C9 | 112.6 (2) |
C6—C2—H2 | 119.5 | C11—C10—H10A | 109.1 |
C5—C2—H2 | 119.5 | C9—C10—H10A | 109.1 |
C1—C3—C4 | 119.7 (2) | C11—C10—H10B | 109.1 |
C1—C3—H3 | 120.2 | C9—C10—H10B | 109.1 |
C4—C3—H3 | 120.2 | H10A—C10—H10B | 107.8 |
C3—C4—C5 | 120.5 (2) | N3—C11—C10 | 111.89 (19) |
C3—C4—H4 | 119.7 | N3—C11—H11A | 109.2 |
C5—C4—H4 | 119.7 | C10—C11—H11A | 109.2 |
C2—C5—C4 | 118.33 (19) | N3—C11—H11B | 109.2 |
C2—C5—N1 | 125.3 (2) | C10—C11—H11B | 109.2 |
C4—C5—N1 | 116.3 (2) | H11A—C11—H11B | 107.9 |
C2—C6—C1 | 118.9 (2) | N3—C12—H12A | 109.5 |
C2—C6—H6 | 120.6 | N3—C12—H12B | 109.5 |
C1—C6—H6 | 120.6 | H12A—C12—H12B | 109.5 |
N2—C7—C8 | 115.1 (2) | N3—C12—H12C | 109.5 |
N2—C7—C9 | 124.0 (2) | H12A—C12—H12C | 109.5 |
C8—C7—C9 | 120.91 (19) | H12B—C12—H12C | 109.5 |
N3—C8—C7 | 124.5 (2) |
Experimental details
Crystal data | |
Chemical formula | C12H14ClN3 |
Mr | 235.71 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.251 (2), 8.483 (3), 11.824 (4) |
α, β, γ (°) | 77.59 (1), 78.45 (1), 87.01 (2) |
V (Å3) | 599.9 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.6 × 0.5 × 0.4 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3028, 2893, 1803 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.191, 1.04 |
No. of reflections | 2893 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.50 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Boido Canu, C., Boido, V., Sparatore, F., Sparatore, A., Susanna, V., Russo, S., Canicola, M. L. & Marmo, E. (1988). Farmaco Ed. Sci. 43, 819–837. CAS Google Scholar
Canu Boido, C., Boido, V., Sparatore, F., Sparatore, A., Bombieri, G., Benetollo, F., Debbia, E. & Pesce Schito, A. (1993). Il Farmaco, 48, 749–775. CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sparatore, A., Canu Boido, C., Boido, V., Sparatore, F., Debbia, E. & Pesce Schito, A. (1990). Il Farmaco, 45, 867–877. CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In order to define the influence exerted by the chloro-benzene nucleus on the yields of azoenamines, the hydrazone-hydrazoene tautomerism has been investigated by X-ray analysis of the derivative 1 (Fig. 1). The results could be an useful tool to understand the antimicrobial properties of arylazoenamine compounds (Canu Boido et al., 1993). As this compound could resonate with the amphoionic structure, the X-ray analysis allowed the identification of the tautomer (Fig. 2). The extended conformation of the azoenamine skeleton is characterized by the torsion angles N3—C8—C7—N2 of 179.2 (1)°, C8—C7—N2—N1 of 179.2 (1)°, C7—N2—N1—C5 of 179.0 (1)° and N2—N1—C5—C4 of 176.9 (1)°, indicating the quite coplanarity of the aromatic ring with the azoenamine moiety. This allows a certain degree of electron delocalization, beginning at the phenyl moiety and extending through the double bond, as shown by the shortening of the bond lenghts N2—C7 of 1.361 (4)Å and C8—N3 of 1.361 (4) Å. The half chair conformation of the tetrahydropyridine ring is defined by the puckering parameter of ϕ2=173.3 (1)° and QT=0.426 (4)Å (Cremer & Pople, 1975). The molecular packing is governed by the van der Waals interactions through the stacking of adjacent molecules, resulting in a two-dimesional sheet structure (Fig. 3).