metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­pyridine­nickel(II)]-μ-5-bromo­isophthalato]

aDepartment of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
*Correspondence e-mail: liulijun@lcu.edu.cn

(Received 10 June 2008; accepted 23 June 2008; online 28 June 2008)

The title compound, [Ni(C8H3BrO4)(C5H5N)3], is the first structurally characterized complex with a transition metal coordinated by a 5-bromo­isophthalate anion. The NiII ion is coordinated by three O atoms from the carboxyl­ate groups and three N atoms from three pyridine ligands in a distorted octa­hedral coordination geometry. The 5-bromo­isophthalate anion is planar within 0.057 (2) Å. The two carboxyl­ate groups of the ligand coordinate the NiII ions in a chelating and monodentate mode, linking the metal atoms into infinite chains along the [010] direction. These chains are stacked together via strong ππ inter­actions between the pyridine rings [centroid–centroid distance 3.601 (4) Å], forming a three-dimensional motif.

Related literature

For related literature, see: Therrien et al. (2005[Therrien, B., Vieille-Petit, L. & Suss-Fink, G. (2005). J. Mol. Struct. 749, 183-186.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H3BrO4)(C5H5N)3]

  • Mr = 539.02

  • Monoclinic, C 2/c

  • a = 19.6621 (6) Å

  • b = 16.0190 (6) Å

  • c = 14.8755 (5) Å

  • β = 111.504 (2)°

  • V = 4359.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 296 (2) K

  • 0.22 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.582, Tmax = 0.809

  • 22727 measured reflections

  • 5402 independent reflections

  • 4195 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.05

  • 5402 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Br1—C5 1.899 (2)
Ni1—N2 2.1439 (19)
Ni1—O2 2.1655 (17)
Ni1—O1 2.2024 (17)
N2—Ni1—O2 152.98 (7)
N2—Ni1—O1 92.78 (7)
O2—Ni1—O1 60.20 (6)
N2—Ni1—N1 90.11 (7)
O2—Ni1—N1 90.48 (7)
O1—Ni1—N1 90.02 (7)
N2—Ni1—N3 91.78 (7)
O2—Ni1—N3 88.13 (7)
O1—Ni1—N3 90.54 (7)
N1—Ni1—N3 178.00 (7)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 5-bromoisophthalic acid ligand (H2BIPA) was hitherto reported in its molecular form in the cystal structure of its cocrystal complex (Therrien et al., 2005). This paper provides the fist example of its structurally characterized complex with a transition metal; the ligand in this complex is twice deprotonated.

The asymmetric unit of Ni(BIPA)(C5H5N)3 occupies a general position in the unit cell; the Ni atom is coordinated by four O atoms from the carboxylicate groups and three N atoms from the pyridine ligands (Ni1—N2 2.143 (2), Ni1—O2 2.165 (2), Ni1—O1 2.202 (2), Ni1—N1 2.204 (2), Ni1—N3 2.204 (2) and Ni1—O3 1.996 (2) Å) (Fig. 1). The BIPA ligand has essentially planar conformation, the maximum deviation of the O3 atom from its mean plane being 0.057 (2) Å. The geometry of the ligand is similar to the one observed in Therrien et al., (2005).

No guest molecule or Hydrogen bond was detected in the structure; The two carboxylate groups of the ligand coordinated with the Ni(II) in monodentate and chelated mode, respectively, linking the Ni(II) ion into an infinte chain along the (010) direction. The chains are stacked together via the strong π-π interactions between the pyridine rings to form a three-dimensional motif.(Fig. 2).

Related literature top

For related literature, see: Therrien et al. (2005).

Experimental top

NiCl2.4H2O (0.5 mmol, 101 mg) and 5-bromoisophthalic acid (0.5 mmol, 123 mg) were added to 30 ml of distilled water. After stirring for 15 min at room temperature, the pH value was adjusted to 6 by few drops of pyridine, and clear solution was allowed to evaporate in the ventilating cabinet. Light green plate crystals of the title compound were obtained after 4 days, in yields of 35%. The crystals were filtered, washed by cold EtOH and dried in the air.

Refinement top

All of the H atoms were positioned geometrically and refined using a riding model with C—H = 0.930 Å, with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. The unlabeled atoms are derived from the reference atoms by means of the (1.5 - x, -1/2 + y, 1.5 - z) symmetry transformation..
[Figure 2] Fig. 2. Packing diagram viewed down the b axis,
catena-Poly[[tripyridinenickel(II)]-µ-5-bromoisophthalato] top
Crystal data top
[Ni(C8H3BrO4)(C5H5N)3]F(000) = 2176
Mr = 539.02Dx = 1.643 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9035 reflections
a = 19.6621 (6) Åθ = 2.7–28.7°
b = 16.0190 (6) ŵ = 2.76 mm1
c = 14.8755 (5) ÅT = 296 K
β = 111.504 (2)°Plate, green
V = 4359.2 (3) Å30.22 × 0.20 × 0.08 mm
Z = 8
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5402 independent reflections
Radiation source: fine-focus sealed tube4195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.582, Tmax = 0.809k = 2121
22727 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0529P)2 + 2.0236P]
where P = (Fo2 + 2Fc2)/3
5402 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C8H3BrO4)(C5H5N)3]V = 4359.2 (3) Å3
Mr = 539.02Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.6621 (6) ŵ = 2.76 mm1
b = 16.0190 (6) ÅT = 296 K
c = 14.8755 (5) Å0.22 × 0.20 × 0.08 mm
β = 111.504 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5402 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4195 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.809Rint = 0.034
22727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.65 e Å3
5402 reflectionsΔρmin = 0.34 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.104271 (13)1.027190 (17)0.93289 (2)0.04600 (10)
Ni10.833627 (16)0.667412 (18)0.78863 (2)0.03305 (10)
O10.92550 (9)0.75627 (10)0.83248 (13)0.0385 (4)
N10.83251 (11)0.66980 (12)0.93619 (15)0.0352 (4)
C10.87970 (13)0.81533 (14)0.80832 (16)0.0313 (5)
O20.81214 (9)0.80030 (10)0.77426 (13)0.0386 (4)
N20.90493 (11)0.56123 (12)0.82571 (14)0.0333 (4)
C20.82483 (13)1.12204 (14)0.78305 (16)0.0314 (5)
O30.75769 (9)1.09924 (11)0.75262 (12)0.0396 (4)
N30.83124 (11)0.66766 (12)0.63935 (15)0.0351 (4)
C30.87912 (12)1.05099 (14)0.81091 (16)0.0282 (4)
O40.84705 (11)1.19426 (11)0.79268 (15)0.0487 (5)
C40.95349 (12)1.06846 (14)0.85107 (16)0.0309 (5)
H40.96981.12340.86090.037*
C51.00279 (12)1.00317 (15)0.87614 (16)0.0311 (5)
C60.98030 (12)0.92097 (14)0.86223 (17)0.0318 (5)
H61.01430.87780.87960.038*
C70.90594 (12)0.90378 (13)0.82181 (16)0.0291 (5)
C80.85606 (13)0.96895 (14)0.79651 (16)0.0298 (5)
H80.80630.95720.76940.036*
C90.85644 (15)0.73386 (16)0.99719 (19)0.0425 (6)
H90.88090.77700.97990.051*
C100.79950 (15)0.60768 (16)0.9655 (2)0.0426 (6)
H100.78340.56140.92560.051*
C110.84689 (16)0.73964 (17)1.0846 (2)0.0467 (6)
H110.86460.78551.12470.056*
C120.78831 (15)0.60906 (19)1.0510 (2)0.0481 (7)
H120.76550.56441.06840.058*
C130.81117 (16)0.67711 (18)1.1112 (2)0.0479 (7)
H130.80250.68031.16850.058*
C140.97593 (15)0.57400 (17)0.8668 (2)0.0509 (7)
H140.99240.62880.87940.061*
C150.88262 (15)0.48241 (16)0.8088 (2)0.0452 (6)
H150.83280.47210.77910.054*
C161.02719 (16)0.5108 (2)0.8921 (3)0.0647 (9)
H161.07680.52280.92000.078*
C170.92961 (17)0.41524 (17)0.8331 (2)0.0520 (7)
H170.91180.36090.82130.062*
C181.00334 (17)0.43030 (19)0.8752 (2)0.0569 (8)
H181.03650.38630.89180.068*
C190.77634 (15)0.63156 (16)0.56745 (19)0.0419 (6)
H190.74270.60000.58350.050*
C200.87919 (15)0.71115 (17)0.6137 (2)0.0434 (6)
H200.91850.73590.66210.052*
C210.76665 (16)0.63834 (18)0.4714 (2)0.0478 (7)
H210.72760.61180.42440.057*
C220.87340 (17)0.72126 (19)0.5186 (2)0.0504 (7)
H220.90800.75220.50400.061*
C230.81539 (16)0.68473 (18)0.4458 (2)0.0488 (7)
H230.80960.69140.38130.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02529 (13)0.04761 (17)0.05865 (18)0.00510 (11)0.00777 (11)0.00334 (12)
Ni10.02778 (16)0.02420 (15)0.04311 (19)0.00138 (11)0.00821 (13)0.00097 (12)
O10.0380 (9)0.0225 (8)0.0521 (10)0.0005 (7)0.0130 (8)0.0004 (7)
N10.0341 (11)0.0288 (10)0.0404 (11)0.0037 (8)0.0107 (9)0.0003 (8)
C10.0334 (12)0.0258 (11)0.0337 (12)0.0037 (9)0.0113 (10)0.0000 (9)
O20.0331 (9)0.0283 (8)0.0503 (10)0.0051 (7)0.0103 (8)0.0015 (7)
N20.0304 (10)0.0277 (9)0.0387 (11)0.0032 (8)0.0091 (8)0.0007 (8)
C20.0350 (12)0.0280 (11)0.0306 (11)0.0075 (9)0.0114 (10)0.0030 (9)
O30.0276 (9)0.0359 (9)0.0488 (10)0.0089 (7)0.0063 (7)0.0004 (8)
N30.0340 (11)0.0285 (10)0.0404 (11)0.0035 (8)0.0109 (9)0.0002 (8)
C30.0281 (11)0.0254 (10)0.0312 (11)0.0016 (8)0.0108 (9)0.0001 (9)
O40.0485 (11)0.0266 (9)0.0697 (13)0.0064 (8)0.0203 (10)0.0038 (8)
C40.0316 (12)0.0230 (10)0.0371 (12)0.0023 (9)0.0116 (10)0.0016 (9)
C50.0215 (10)0.0338 (11)0.0343 (12)0.0012 (9)0.0061 (9)0.0003 (9)
C60.0267 (11)0.0272 (11)0.0384 (12)0.0050 (9)0.0084 (9)0.0016 (9)
C70.0300 (11)0.0242 (10)0.0324 (11)0.0006 (9)0.0107 (9)0.0006 (9)
C80.0257 (11)0.0272 (11)0.0350 (12)0.0004 (9)0.0094 (9)0.0011 (9)
C90.0464 (15)0.0333 (13)0.0454 (15)0.0002 (11)0.0140 (12)0.0009 (11)
C100.0405 (14)0.0361 (13)0.0466 (15)0.0023 (11)0.0105 (11)0.0017 (11)
C110.0585 (17)0.0363 (14)0.0412 (14)0.0086 (13)0.0136 (13)0.0008 (11)
C120.0406 (15)0.0534 (16)0.0490 (16)0.0000 (13)0.0149 (12)0.0109 (13)
C130.0452 (15)0.0554 (17)0.0435 (15)0.0153 (13)0.0166 (12)0.0060 (13)
C140.0346 (14)0.0347 (14)0.074 (2)0.0021 (11)0.0089 (13)0.0009 (13)
C150.0343 (13)0.0351 (13)0.0604 (17)0.0018 (11)0.0107 (12)0.0027 (12)
C160.0293 (14)0.0547 (19)0.097 (3)0.0095 (13)0.0075 (16)0.0062 (18)
C170.0551 (18)0.0295 (13)0.0676 (19)0.0070 (12)0.0177 (15)0.0009 (13)
C180.0523 (18)0.0429 (16)0.071 (2)0.0222 (14)0.0174 (15)0.0094 (14)
C190.0419 (14)0.0368 (13)0.0467 (15)0.0030 (11)0.0157 (12)0.0055 (11)
C200.0361 (13)0.0458 (15)0.0473 (15)0.0007 (11)0.0140 (12)0.0021 (12)
C210.0442 (16)0.0507 (16)0.0422 (15)0.0023 (13)0.0082 (12)0.0080 (12)
C220.0504 (17)0.0507 (16)0.0545 (17)0.0018 (13)0.0244 (14)0.0044 (14)
C230.0555 (17)0.0479 (16)0.0425 (15)0.0132 (13)0.0172 (13)0.0035 (12)
Geometric parameters (Å, º) top
Br1—C51.899 (2)C8—H80.9300
Ni1—O3i1.9963 (16)C9—C111.384 (4)
Ni1—N22.1439 (19)C9—H90.9300
Ni1—O22.1655 (17)C10—C121.368 (4)
Ni1—O12.2024 (17)C10—H100.9300
Ni1—N12.204 (2)C11—C131.362 (4)
Ni1—N32.204 (2)C11—H110.9300
O1—C11.264 (3)C12—C131.377 (4)
N1—C91.336 (3)C12—H120.9300
N1—C101.345 (3)C13—H130.9300
C1—O21.259 (3)C14—C161.380 (4)
C1—C71.496 (3)C14—H140.9300
N2—C141.318 (3)C15—C171.377 (4)
N2—C151.330 (3)C15—H150.9300
C2—O41.226 (3)C16—C181.363 (5)
C2—O31.282 (3)C16—H160.9300
C2—C31.511 (3)C17—C181.373 (4)
O3—Ni1ii1.9962 (16)C17—H170.9300
N3—C201.335 (3)C18—H180.9300
N3—C191.341 (3)C19—C211.375 (4)
C3—C81.381 (3)C19—H190.9300
C3—C41.390 (3)C20—C221.386 (4)
C4—C51.381 (3)C20—H200.9300
C4—H40.9300C21—C231.372 (4)
C5—C61.380 (3)C21—H210.9300
C6—C71.390 (3)C22—C231.383 (4)
C6—H60.9300C22—H220.9300
C7—C81.387 (3)C23—H230.9300
O3i—Ni1—N294.29 (7)C3—C8—C7121.0 (2)
O3i—Ni1—O2112.73 (7)C3—C8—H8119.5
N2—Ni1—O2152.98 (7)C7—C8—H8119.5
O3i—Ni1—O1172.84 (7)N1—C9—C11123.7 (3)
N2—Ni1—O192.78 (7)N1—C9—H9118.2
O2—Ni1—O160.20 (6)C11—C9—H9118.2
O3i—Ni1—N188.82 (7)N1—C10—C12123.4 (3)
N2—Ni1—N190.11 (7)N1—C10—H10118.3
O2—Ni1—N190.48 (7)C12—C10—H10118.3
O1—Ni1—N190.02 (7)C13—C11—C9119.1 (3)
O3i—Ni1—N390.39 (7)C13—C11—H11120.5
N2—Ni1—N391.78 (7)C9—C11—H11120.5
O2—Ni1—N388.13 (7)C10—C12—C13119.4 (3)
O1—Ni1—N390.54 (7)C10—C12—H12120.3
N1—Ni1—N3178.00 (7)C13—C12—H12120.3
C1—O1—Ni188.74 (14)C11—C13—C12118.3 (3)
C9—N1—C10116.1 (2)C11—C13—H13120.9
C9—N1—Ni1124.07 (17)C12—C13—H13120.9
C10—N1—Ni1119.51 (17)N2—C14—C16123.8 (3)
O2—C1—O1120.5 (2)N2—C14—H14118.1
O2—C1—C7119.7 (2)C16—C14—H14118.1
O1—C1—C7119.7 (2)N2—C15—C17123.3 (3)
C1—O2—Ni190.54 (14)N2—C15—H15118.4
C14—N2—C15117.1 (2)C17—C15—H15118.4
C14—N2—Ni1118.52 (17)C18—C16—C14118.4 (3)
C15—N2—Ni1124.42 (17)C18—C16—H16120.8
O4—C2—O3125.9 (2)C14—C16—H16120.8
O4—C2—C3119.5 (2)C18—C17—C15118.5 (3)
O3—C2—C3114.5 (2)C18—C17—H17120.8
C2—O3—Ni1ii130.29 (15)C15—C17—H17120.8
C20—N3—C19116.3 (2)C16—C18—C17119.0 (3)
C20—N3—Ni1122.15 (17)C16—C18—H18120.5
C19—N3—Ni1121.10 (17)C17—C18—H18120.5
C8—C3—C4119.5 (2)N3—C19—C21124.0 (3)
C8—C3—C2121.0 (2)N3—C19—H19118.0
C4—C3—C2119.5 (2)C21—C19—H19118.0
C5—C4—C3119.2 (2)N3—C20—C22123.4 (3)
C5—C4—H4120.4N3—C20—H20118.3
C3—C4—H4120.4C22—C20—H20118.3
C6—C5—C4121.8 (2)C23—C21—C19119.1 (3)
C6—C5—Br1119.11 (17)C23—C21—H21120.4
C4—C5—Br1119.06 (17)C19—C21—H21120.4
C5—C6—C7118.8 (2)C23—C22—C20119.1 (3)
C5—C6—H6120.6C23—C22—H22120.5
C7—C6—H6120.6C20—C22—H22120.5
C8—C7—C6119.7 (2)C21—C23—C22118.1 (3)
C8—C7—C1120.1 (2)C21—C23—H23120.9
C6—C7—C1120.1 (2)C22—C23—H23121.0
N2—Ni1—O1—C1179.66 (14)O4—C2—C3—C42.8 (3)
O2—Ni1—O1—C10.32 (13)O3—C2—C3—C4175.6 (2)
N1—Ni1—O1—C190.23 (14)C8—C3—C4—C50.3 (3)
N3—Ni1—O1—C187.85 (14)C2—C3—C4—C5179.8 (2)
O3i—Ni1—N1—C9146.9 (2)C3—C4—C5—C60.1 (4)
N2—Ni1—N1—C9118.8 (2)C3—C4—C5—Br1179.01 (17)
O2—Ni1—N1—C934.2 (2)C4—C5—C6—C70.0 (4)
O1—Ni1—N1—C926.0 (2)Br1—C5—C6—C7179.19 (17)
O3i—Ni1—N1—C1026.11 (19)C5—C6—C7—C80.1 (3)
N2—Ni1—N1—C1068.18 (19)C5—C6—C7—C1178.3 (2)
O2—Ni1—N1—C10138.84 (19)O2—C1—C7—C80.3 (3)
O1—Ni1—N1—C10160.96 (18)O1—C1—C7—C8179.3 (2)
Ni1—O1—C1—O20.5 (2)O2—C1—C7—C6177.9 (2)
Ni1—O1—C1—C7178.45 (19)O1—C1—C7—C61.1 (3)
O1—C1—O2—Ni10.6 (2)C4—C3—C8—C70.2 (3)
C7—C1—O2—Ni1178.44 (19)C2—C3—C8—C7179.8 (2)
O3i—Ni1—O2—C1178.35 (13)C6—C7—C8—C30.0 (3)
N2—Ni1—O2—C11.8 (2)C1—C7—C8—C3178.2 (2)
O1—Ni1—O2—C10.32 (13)C10—N1—C9—C112.0 (4)
N1—Ni1—O2—C189.43 (14)Ni1—N1—C9—C11171.2 (2)
N3—Ni1—O2—C192.01 (14)C9—N1—C10—C121.8 (4)
O3i—Ni1—N2—C14174.3 (2)Ni1—N1—C10—C12171.7 (2)
O2—Ni1—N2—C145.8 (3)N1—C9—C11—C130.0 (4)
O1—Ni1—N2—C144.6 (2)N1—C10—C12—C130.4 (4)
N1—Ni1—N2—C1485.5 (2)C9—C11—C13—C122.3 (4)
N3—Ni1—N2—C1495.2 (2)C10—C12—C13—C112.5 (4)
O3i—Ni1—N2—C156.8 (2)C15—N2—C14—C160.3 (5)
O2—Ni1—N2—C15173.11 (19)Ni1—N2—C14—C16178.7 (3)
O1—Ni1—N2—C15174.4 (2)C14—N2—C15—C170.9 (4)
N1—Ni1—N2—C1595.6 (2)Ni1—N2—C15—C17179.8 (2)
N3—Ni1—N2—C1583.7 (2)N2—C14—C16—C181.0 (6)
O4—C2—O3—Ni1ii0.5 (4)N2—C15—C17—C181.3 (5)
C3—C2—O3—Ni1ii177.90 (14)C14—C16—C18—C170.5 (5)
O3i—Ni1—N3—C20175.21 (19)C15—C17—C18—C160.6 (5)
N2—Ni1—N3—C2090.49 (19)C20—N3—C19—C211.2 (4)
O2—Ni1—N3—C2062.47 (19)Ni1—N3—C19—C21171.5 (2)
O1—Ni1—N3—C202.31 (19)C19—N3—C20—C221.4 (4)
O3i—Ni1—N3—C192.84 (19)Ni1—N3—C20—C22171.3 (2)
N2—Ni1—N3—C1997.14 (19)N3—C19—C21—C230.1 (4)
O2—Ni1—N3—C19109.90 (19)N3—C20—C22—C230.1 (4)
O1—Ni1—N3—C19170.06 (18)C19—C21—C23—C221.4 (4)
O4—C2—C3—C8176.7 (2)C20—C22—C23—C211.3 (4)
O3—C2—C3—C84.8 (3)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H3BrO4)(C5H5N)3]
Mr539.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.6621 (6), 16.0190 (6), 14.8755 (5)
β (°) 111.504 (2)
V3)4359.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.22 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.582, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
22727, 5402, 4195
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.05
No. of reflections5402
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.34

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Br1—C51.899 (2)Ni1—O22.1655 (17)
Ni1—N22.1439 (19)Ni1—O12.2024 (17)
N2—Ni1—O2152.98 (7)O1—Ni1—N190.02 (7)
N2—Ni1—O192.78 (7)N2—Ni1—N391.78 (7)
O2—Ni1—O160.20 (6)O2—Ni1—N388.13 (7)
N2—Ni1—N190.11 (7)O1—Ni1—N390.54 (7)
O2—Ni1—N190.48 (7)N1—Ni1—N3178.00 (7)
 

Acknowledgements

The author is grateful to Professor D. Wang for his help.

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTherrien, B., Vieille-Petit, L. & Suss-Fink, G. (2005). J. Mol. Struct. 749, 183–186.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds