organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Bromo­naphthalen-2-yl)aceto­nitrile

aDepartment of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
*Correspondence e-mail: djones@uncc.edu, cogle@uncc.edu

(Received 29 December 2007; accepted 9 June 2008; online 19 June 2008)

The title compound, C12H8BrN, was prepared as a starting material for a Suzuki cross-coupling reaction with a pinacol ester. The torsion angle about the ring–methylene C—C bond is 30.7 (3)°, such that the N atom is displaced by 1.174 (4) Å from the plane of the naphthalene ring system.

Related literature

A search of the Cambridge Structural Database [Version 5.29 (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.])] yielded one comparable structure, (4-bromo­naphthalen-2-yl)acetonitrile (Refcode BAGTEJ; Duthie et al., 2001[Duthie, A., Scammells, P. J., Katsifis, A. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 531-532.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8BrN

  • Mr = 246.1

  • Monoclinic, P 21 /n

  • a = 11.3599 (13) Å

  • b = 7.2379 (8) Å

  • c = 11.8901 (15) Å

  • β = 102.538 (10)°

  • V = 954.31 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.47 mm−1

  • T = 295 (2) K

  • 0.5 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 6502 measured reflections

  • 1729 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 75 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.01

  • 1729 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: DIRDIF (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (Fig.1) was prepared as a starting material for a Suzuki cross coupling reaction with a pinacol ester. The C11—C12—N angle is 178.4 (3)°, and the plane of that grouping makes an angle of 42.5 (1)° with the plane of the naphthalene ring, while the N atom is displaced 1.174 (4) Å from the plane of the naphthalene ring. As shown in Figs. 2 and 3, the molecules form alternating layers when viewed edge-on and form columns when viewed along the b axis.

A search of the Cambridge Structural Database [Version 5.29; (Allen, 2002); CONQUEST, Version 1.10 (Bruno et al., 2002)] yielded one comparable structure, (4-bromonapthalen-2-yl)acetonitrile (Refcode BAGTEJ; Duthie et al., 2001). In that structure the acetonitrile C—C—N angle was 179.3°, and the plane of that grouping made an angle of 23.1° with the plane of the naphthalene ring. The N atom was displaced 0.287 Å from the plane of the naphthalene ring.

Related literature top

A search of the Cambridge Structural Database [Version 5.29 (Allen, 2002); CONQUEST (Bruno et al., 2002)] yielded one comparable structure, (4-bromonapthalen-2-yl)acetonitrile (Refcode BAGTEJ; Duthie et al., 2001).

Experimental top

Synthesis of 1-bromo-2-methylnaphthalene (II) (Fig. 4). A solution of 2-methylnaphthalene (I) in acetic acid was stirred while an equivalent amount of Br2 in acetic acid was added dropwise at a rate that allowed the bromine color to dissipate between drops. Upon completion of addition the mixture was allowed to stir for 1 h at which time the entire mixture was poured into water. The organic phase was separated and washed repeatedly with water to remove the acetic acid. The product was dried with K2CO3 and used in the next step without further purification.

Synthesis of 1-bromo-2-(bromomethyl)naphthalene (III). N-Bromosuccinimide (1 eq) and benzoylperoxide (0.01 eq) were added to a solution of (II) dissolved in CCl4. The reaction was then heated to reflux and the reaction progress was monitored with GC/MS. The reaction seemed to stall out at 3 h, and an additional portion of benzoylperoxide (0.01 eq) was added and allowed to reflux for an additional 3 h. The succinimide byproduct was removed by filtration from the cooled mixture. The CCl4 was removed and the product (III) was recrystallized from isooctane.

Synthesis of the title compound (IV). KCN (1.1 eq) was dissolved in DMSO with stirring. III (1.0 eq) was added along with additional DMSO to the stirred reaction mixture. A slight exotherm was observed, and the homogeneous mixture was allowed to stir overnight. The reaction was judged to be complete by GC/MS analysis. The reaction mixture was poured into water with stirring. The product precipitated upon addition to water. After filtering, the product was dried on a watch glass, and crystals for the diffraction study were obtained by recrystallization from a 2:1 mixture of 1,2-dimethoxyethane and ethanol.

Refinement top

H atoms were constrained using a riding model. The methylene C—H bond lengths were fixed at 0.97 Å, using an idealized tetrahedral geometry, with Uiso(H) = 1.2 Ueq. (C). The aromatic C—H bond lengths were fixed at 0.93 Å, with Uiso(H) = 1.2 Ueq. (C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: DIRDIF (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound (IV) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Diagram showing how the molecules of (IV) pack in alternating layers when viewed edge-on.
[Figure 3] Fig. 3. Diagram showing how the molecules of (IV) form columns when viewed along the b axis.
[Figure 4] Fig. 4. The formation of the title compound.
(1-Bromonaphthalen-2-yl)acetonitrile top
Crystal data top
C12H8BrNF(000) = 488
Mr = 246.1Dx = 1.713 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 22 reflections
a = 11.3599 (13) Åθ = 8.6–16.7°
b = 7.2379 (8) ŵ = 5.47 mm1
c = 11.8901 (15) ÅT = 295 K
β = 102.538 (10)°Prism, yellow
V = 954.31 (19) Å30.5 × 0.2 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 67.5°, θmin = 4.9°
Nonprofiled θ/2θ scansh = 1313
6502 measured reflectionsk = 88
1729 independent reflectionsl = 1414
1558 reflections with I > 2σ(I)3 standard reflections every 75 reflections
Rint = 0.031 intensity decay: 2%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.7384P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.35 e Å3
1729 reflectionsΔρmin = 0.51 e Å3
127 parameters
Crystal data top
C12H8BrNV = 954.31 (19) Å3
Mr = 246.1Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.3599 (13) ŵ = 5.47 mm1
b = 7.2379 (8) ÅT = 295 K
c = 11.8901 (15) Å0.5 × 0.2 × 0.2 mm
β = 102.538 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.031
6502 measured reflections3 standard reflections every 75 reflections
1729 independent reflections intensity decay: 2%
1558 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
1729 reflectionsΔρmin = 0.51 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.22261 (2)0.12936 (4)0.490726 (19)0.04829 (11)
N0.2239 (2)0.0251 (4)0.2063 (2)0.0621 (6)
C20.0751 (2)0.1301 (3)0.2652 (2)0.0364 (5)
C90.29263 (19)0.1292 (3)0.2734 (2)0.0339 (4)
C10.1920 (2)0.1289 (3)0.32691 (18)0.0334 (4)
C100.2689 (2)0.1334 (3)0.1517 (2)0.0353 (5)
C40.1481 (2)0.1373 (3)0.0887 (2)0.0416 (5)
H40.1320.14140.00870.05*
C80.4149 (2)0.1250 (3)0.3346 (2)0.0421 (5)
H80.43270.12220.41470.051*
C120.1394 (2)0.0450 (3)0.2562 (2)0.0434 (5)
C110.0312 (2)0.1321 (4)0.3232 (2)0.0485 (6)
H11A0.00820.06940.39680.058*
H11B0.04980.25930.33840.058*
C30.0552 (2)0.1353 (3)0.1439 (2)0.0416 (5)
H30.02350.13730.10070.05*
C50.3660 (2)0.1332 (3)0.0944 (2)0.0435 (5)
H50.35060.13510.01430.052*
C70.5062 (2)0.1252 (3)0.2767 (2)0.0488 (6)
H70.58570.12190.31810.059*
C60.4826 (2)0.1302 (3)0.1566 (2)0.0484 (6)
H60.54620.13140.11870.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.05003 (18)0.06614 (18)0.03112 (16)0.00544 (11)0.01412 (12)0.00341 (10)
N0.0373 (12)0.0871 (17)0.0637 (15)0.0030 (12)0.0149 (11)0.0019 (13)
C20.0366 (11)0.0376 (10)0.0387 (12)0.0030 (8)0.0163 (10)0.0017 (9)
C90.0362 (11)0.0297 (9)0.0391 (11)0.0019 (8)0.0152 (10)0.0016 (8)
C10.0398 (11)0.0328 (10)0.0302 (10)0.0025 (8)0.0133 (9)0.0015 (8)
C100.0393 (11)0.0323 (10)0.0383 (12)0.0023 (8)0.0170 (10)0.0000 (8)
C40.0449 (13)0.0510 (13)0.0311 (11)0.0025 (10)0.0132 (10)0.0018 (9)
C80.0389 (12)0.0459 (12)0.0421 (13)0.0006 (9)0.0099 (10)0.0001 (10)
C120.0353 (12)0.0531 (13)0.0465 (13)0.0060 (11)0.0195 (11)0.0062 (11)
C110.0406 (13)0.0632 (15)0.0476 (14)0.0070 (11)0.0222 (12)0.0079 (11)
C30.0346 (11)0.0530 (13)0.0380 (12)0.0023 (10)0.0092 (10)0.0011 (10)
C50.0496 (14)0.0430 (12)0.0451 (13)0.0010 (10)0.0260 (12)0.0002 (10)
C70.0336 (12)0.0531 (13)0.0609 (16)0.0003 (10)0.0130 (12)0.0011 (11)
C60.0413 (13)0.0485 (13)0.0636 (17)0.0002 (10)0.0292 (13)0.0008 (11)
Geometric parameters (Å, º) top
Br—C11.903 (2)C8—C71.364 (3)
N—C121.132 (3)C8—H80.93
C2—C11.371 (3)C12—C111.455 (4)
C2—C31.410 (3)C11—H11A0.97
C2—C111.515 (3)C11—H11B0.97
C9—C101.413 (3)C3—H30.93
C9—C11.424 (3)C5—C61.370 (4)
C9—C81.422 (3)C5—H50.93
C10—C51.417 (3)C7—C61.396 (4)
C10—C41.413 (3)C7—H70.93
C4—C31.358 (3)C6—H60.93
C4—H40.93
C1—C2—C3117.95 (19)C12—C11—C2114.1 (2)
C1—C2—C11122.1 (2)C12—C11—H11A108.7
C3—C2—C11119.9 (2)C2—C11—H11A108.7
C10—C9—C1117.7 (2)C12—C11—H11B108.7
C10—C9—C8118.25 (19)C2—C11—H11B108.7
C1—C9—C8124.1 (2)H11A—C11—H11B107.6
C2—C1—C9122.6 (2)C4—C3—C2121.7 (2)
C2—C1—Br119.22 (15)C4—C3—H3119.1
C9—C1—Br118.16 (17)C2—C3—H3119.1
C5—C10—C9119.7 (2)C6—C5—C10120.2 (2)
C5—C10—C4120.9 (2)C6—C5—H5119.9
C9—C10—C4119.36 (19)C10—C5—H5119.9
C3—C4—C10120.7 (2)C8—C7—C6121.2 (2)
C3—C4—H4119.6C8—C7—H7119.4
C10—C4—H4119.6C6—C7—H7119.4
C7—C8—C9120.5 (2)C5—C6—C7120.1 (2)
C7—C8—H8119.8C5—C6—H6120
C9—C8—H8119.8C7—C6—H6120
N—C12—C11178.4 (3)

Experimental details

Crystal data
Chemical formulaC12H8BrN
Mr246.1
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.3599 (13), 7.2379 (8), 11.8901 (15)
β (°) 102.538 (10)
V3)954.31 (19)
Z4
Radiation typeCu Kα
µ (mm1)5.47
Crystal size (mm)0.5 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6502, 1729, 1558
Rint0.031
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.01
No. of reflections1729
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.51

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), DIRDIF (Beurskens et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported in part by funds provided by the University of North Carolina at Charlotte.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuthie, A., Scammells, P. J., Katsifis, A. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 531–532.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds