organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol

aZonguldak Karaelmas University, Department of Chemistry, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 15 May 2008; accepted 9 June 2008; online 13 June 2008)

In the title compound, C10H11N3O, the planar five- and six-membered rings are nearly parallel to each other, making a dihedral angle of 2.52 (5)°. Weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers and strong inter­molecular O—H⋯N hydrogen bonds link the dimers into infinite chains along the b axis.

Related literature

For general backgroud, see: Holla et al. (1996[Holla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Farmaco, 51, 793-799.]); Sengupta et al. (1978[Sengupta, A. K., Bajaj, O. P. & Chandra, U. (1978). J. Indian Chem. Soc. 55, 962-964.]); Paulvannan et al. (2001[Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677-9682.]); Sui et al. (1998[Sui, Z. H., Guan, J. H., Hlasta, D. J., Macielag, M. J., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C. & Barrett, J. F. (1998). Bioorg. Med. Chem. Lett. 8, 1929-1934.]); Bodey (1992[Bodey, G. P. (1992). Clin. Infect. Dis. 14, S161-S169.]). For related literature, see: Peeters et al. (1979a[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Bull. Soc. Chim. Belg. 88, 265-272.],b[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Acta Cryst. B35, 2461-2464.]); Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Peeters et al. (1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225-2229.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O

  • Mr = 189.22

  • Monoclinic, P 21 /c

  • a = 11.5356 (2) Å

  • b = 10.1173 (2) Å

  • c = 8.7127 (2) Å

  • β = 108.581 (1)°

  • V = 963.85 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.55 × 0.25 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.989

  • 13352 measured reflections

  • 2208 independent reflections

  • 1647 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.03

  • 2208 reflections

  • 171 parameters

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H⋯N2i 0.88 (2) 2.00 (2) 2.8645 (17) 166 (2)
C10—H10⋯Oii 0.959 (16) 2.566 (16) 3.3198 (17) 135.6 (13)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Azole derivatives continue to occupy an important place among systemic antifungal drugs. 1,2,4-triazoles are biologically interesting and their chemistry is receiving considerable attention due to their antihypertensive, antifungal and antibacterial properties (Holla et al., 1996; Sengupta et al., 1978; Paulvannan et al., 2001; Sui et al., 1998). The azole antifungals possessing an imidazole or triazole ring (such as miconazole, ketoconazole, fluconazole, econazole and itraconazole) inhibit the synthesis of sterols in fungi by inhibiting cytochrome P-450-dependent 14α-lanosterol demethylase (P-45014DM) and prevent cytochrome P-450 activity (Bodey, 1992). The crystal structures of miconazole (Peeters et al., 1997a), ketoconazole (Peeters et al., 1979b), fluconazole (Caira et al., 2004), econazole (Freer et al., 1986) and itraconazole (Peeters et al., 1996) have already been reported. This paper describes the crystal structure of a 1,2,4-triazole derivative, (I).

In (I) the bond lengths and angles are generally within normal ranges (Fig. 1). The 1,2,4-triazole and benzene rings, A (N1—N3/C1/C2) and B (C5—C10), are planar and nearly parallel to each other with a dihedral angle of A/B = 2.52 (5)°. Atoms C3 and C4 are 0.040 (1) Å and -0.046 (1) Å away from the ring planes of A and B, respectively indicating that they are coplanar with the adjacent rings. The N1—C3—C4 [111.53 (10)°] and C3—C4—C5 [109.94 (10)°] bond angles are a little different from each other, while O—C4—C3 [109.53 (11)°] and O—C4—C5 [110.01 (10)°] bond angles are nearly equal. In ring A, the equivalent N1—N2—C1 [102.24 (12)°] and C1—N3—C2 [102.29 (13)°] bond angles are narrowed and approximately equal to one another, while the N3—C2—N1 [111.04 (15)°] and N3—C1—N2 [115.33 (15)°] bond angles are quite different and larger than normal, probably due to the strong intermolecular O—H···N hydrogen bonds (Table 1).

In the crystal packing weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers and strong intermolecular O—H···N hydrogen bonds (Table 1) link the dimers along the b axis (Fig. 2).

Related literature top

For general backgroud, see: Holla et al. (1996); Sengupta et al. (1978); Paulvannan et al. (2001); Sui et al. (1998); Bodey (1992). For related literature, see: Peeters et al. (1979a,b); Caira et al. (2004); Freer et al. (1986); Peeters et al. (1996).

Experimental top

For the preparation of the title compound, a mixture of 1-phenyl-2-(1H-1,2,4 -triazol-1-yl)ethanone (800 mg, 4.27 mmol) and sodiumborohydride (324 mg, 8.54 mmol) in ethanol (13 ml) was refluxed for 5 h. After evaporation of solvent, the mixture was neutralized with dilute HCl and then refluxed for 30 min. After the mixture was cooled, the solution was alkalinized with NaOH and the precipitate was collected and crystallized from benzene to obtain colorless crystals (yield; 577 mg, 71%).

Refinement top

H atoms were located in difference syntheses and refined isotropically [O—H = 0.88 (2) Å, Uiso(H) = 0.096 (7) Å2 and C—H = 0.959 (16)–1.012 (17) Å, Uiso(H) = 0.034 (3)–0.081 (6) Å2].

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
1-Phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol top
Crystal data top
C10H11N3OF(000) = 400
Mr = 189.22Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12727 reflections
a = 11.5356 (2) Åθ = 2.9–27.5°
b = 10.1173 (2) ŵ = 0.09 mm1
c = 8.7127 (2) ÅT = 294 K
β = 108.581 (1)°Block, colorless
V = 963.85 (3) Å30.55 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2208 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1312
Tmin = 0.972, Tmax = 0.989l = 1110
13352 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.1287P]
where P = (Fo2 + 2Fc2)/3
2208 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H11N3OV = 963.85 (3) Å3
Mr = 189.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5356 (2) ŵ = 0.09 mm1
b = 10.1173 (2) ÅT = 294 K
c = 8.7127 (2) Å0.55 × 0.25 × 0.10 mm
β = 108.581 (1)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2208 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1647 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.989Rint = 0.040
13352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115All H-atom parameters refined
S = 1.03Δρmax = 0.16 e Å3
2208 reflectionsΔρmin = 0.21 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.87872 (10)0.13609 (12)0.06628 (11)0.0588 (3)
H0.813 (2)0.182 (2)0.013 (3)0.096 (7)*
N10.72669 (9)0.10513 (11)0.27992 (13)0.0434 (3)
N20.68815 (10)0.20410 (13)0.35760 (14)0.0521 (3)
N30.52850 (11)0.11273 (16)0.16751 (19)0.0727 (4)
C10.56896 (13)0.20320 (19)0.2849 (2)0.0630 (4)
H10.5169 (17)0.2639 (19)0.316 (2)0.081 (6)*
C20.63083 (13)0.05341 (18)0.1683 (2)0.0596 (4)
H20.6363 (16)0.0179 (19)0.098 (2)0.074 (5)*
C30.85650 (11)0.07494 (15)0.32125 (17)0.0445 (3)
H310.8629 (14)0.0199 (17)0.288 (2)0.063 (5)*
H320.8938 (14)0.0825 (15)0.439 (2)0.059 (4)*
C40.91941 (11)0.16584 (13)0.23363 (14)0.0376 (3)
H40.8978 (11)0.2558 (13)0.2499 (15)0.034 (3)*
C51.05661 (10)0.14872 (12)0.30176 (14)0.0354 (3)
C61.12425 (12)0.22987 (15)0.42648 (16)0.0480 (3)
H61.0823 (15)0.2996 (17)0.467 (2)0.070 (5)*
C71.24947 (13)0.21333 (16)0.49370 (19)0.0572 (4)
H71.2961 (16)0.2732 (19)0.584 (2)0.079 (5)*
C81.30805 (13)0.11523 (17)0.4370 (2)0.0566 (4)
H81.3973 (17)0.1018 (18)0.484 (2)0.078 (5)*
C91.24185 (13)0.03446 (15)0.31286 (19)0.0529 (4)
H91.2826 (15)0.0328 (17)0.269 (2)0.065 (5)*
C101.11643 (12)0.05072 (13)0.24487 (16)0.0426 (3)
H101.0711 (14)0.0032 (15)0.1553 (19)0.055 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0489 (6)0.0914 (8)0.0316 (5)0.0183 (6)0.0065 (4)0.0033 (5)
N10.0314 (5)0.0530 (6)0.0427 (6)0.0020 (4)0.0077 (5)0.0030 (5)
N20.0371 (6)0.0646 (8)0.0512 (7)0.0016 (5)0.0095 (5)0.0048 (6)
N30.0349 (6)0.0949 (11)0.0780 (10)0.0047 (7)0.0036 (6)0.0166 (8)
C10.0365 (7)0.0801 (11)0.0692 (10)0.0026 (7)0.0124 (7)0.0067 (9)
C20.0399 (8)0.0711 (10)0.0607 (9)0.0100 (7)0.0061 (7)0.0121 (8)
C30.0321 (6)0.0542 (8)0.0438 (7)0.0021 (5)0.0075 (5)0.0098 (6)
C40.0363 (6)0.0399 (7)0.0345 (6)0.0042 (5)0.0084 (5)0.0021 (5)
C50.0347 (6)0.0380 (6)0.0345 (6)0.0004 (5)0.0122 (5)0.0041 (5)
C60.0440 (7)0.0515 (8)0.0465 (7)0.0005 (6)0.0116 (6)0.0084 (6)
C70.0441 (8)0.0671 (10)0.0537 (8)0.0100 (7)0.0060 (6)0.0084 (8)
C80.0337 (7)0.0728 (10)0.0603 (9)0.0009 (7)0.0106 (6)0.0085 (8)
C90.0456 (8)0.0579 (9)0.0585 (8)0.0132 (7)0.0212 (7)0.0042 (7)
C100.0425 (7)0.0424 (7)0.0417 (7)0.0038 (6)0.0117 (6)0.0006 (6)
Geometric parameters (Å, º) top
O—C41.4144 (15)C4—H40.966 (13)
O—H0.88 (2)C5—C41.5128 (16)
N1—N21.3602 (16)C5—C61.3869 (18)
N1—C21.3257 (18)C5—C101.3866 (18)
N1—C31.4565 (16)C6—C71.385 (2)
N2—C11.3178 (18)C6—H60.982 (18)
N3—C21.322 (2)C7—H71.01 (2)
C1—N31.341 (2)C8—C71.378 (2)
C1—H10.96 (2)C8—C91.376 (2)
C2—H20.961 (19)C8—H80.989 (19)
C3—H311.012 (17)C9—H90.974 (18)
C3—H320.977 (17)C10—C91.3875 (19)
C4—C31.5194 (18)C10—H100.959 (16)
C4—O—H112.0 (14)C3—C4—H4108.0 (7)
C2—N1—N2109.10 (12)C5—C4—C3109.94 (10)
C2—N1—C3130.55 (13)C5—C4—H4109.7 (7)
N2—N1—C3120.31 (11)C6—C5—C4119.78 (11)
C1—N2—N1102.24 (12)C10—C5—C4121.28 (11)
C2—N3—C1102.29 (13)C10—C5—C6118.92 (12)
N2—C1—N3115.33 (15)C5—C6—H6119.2 (10)
N2—C1—H1120.7 (11)C7—C6—C5120.68 (13)
N3—C1—H1123.9 (11)C7—C6—H6120.1 (10)
N1—C2—H2123.7 (11)C6—C7—H7119.0 (10)
N3—C2—N1111.04 (15)C8—C7—C6120.00 (14)
N3—C2—H2125.2 (11)C8—C7—H7121.0 (10)
N1—C3—C4111.53 (10)C7—C8—H8120.9 (11)
N1—C3—H31107.0 (9)C9—C8—C7119.79 (13)
N1—C3—H32108.5 (9)C9—C8—H8119.3 (11)
C4—C3—H31109.9 (9)C8—C9—C10120.47 (14)
C4—C3—H32110.9 (9)C8—C9—H9120.6 (9)
H31—C3—H32109.0 (13)C10—C9—H9118.9 (9)
O—C4—C3109.53 (11)C5—C10—C9120.14 (13)
O—C4—C5110.01 (10)C5—C10—H10119.5 (9)
O—C4—H4109.6 (7)C9—C10—H10120.3 (9)
C2—N1—N2—C10.35 (16)C6—C5—C4—C392.44 (14)
C3—N1—N2—C1178.19 (12)C10—C5—C4—O34.88 (15)
N2—N1—C2—N30.37 (19)C10—C5—C4—C385.83 (14)
C3—N1—C2—N3177.91 (14)C4—C5—C6—C7178.13 (12)
C2—N1—C3—C494.22 (18)C10—C5—C6—C70.2 (2)
N2—N1—C3—C483.09 (15)C6—C5—C10—C90.30 (19)
N1—N2—C1—N30.24 (19)C4—C5—C10—C9177.99 (12)
C1—N3—C2—N10.2 (2)C5—C6—C7—C80.2 (2)
N2—C1—N3—C20.0 (2)C9—C8—C7—C60.4 (2)
O—C4—C3—N169.27 (14)C7—C8—C9—C100.3 (2)
C5—C4—C3—N1169.73 (11)C5—C10—C9—C80.1 (2)
C6—C5—C4—O146.85 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H···N2i0.88 (2)2.00 (2)2.8645 (17)166 (2)
C10—H10···Oii0.959 (16)2.566 (16)3.3198 (17)135.6 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC10H11N3O
Mr189.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.5356 (2), 10.1173 (2), 8.7127 (2)
β (°) 108.581 (1)
V3)963.85 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.25 × 0.10
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.972, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
13352, 2208, 1647
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.03
No. of reflections2208
No. of parameters171
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H···N2i0.88 (2)2.00 (2)2.8645 (17)166 (2)
C10—H10···Oii0.959 (16)2.566 (16)3.3198 (17)135.6 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z.
 

Acknowledgements

The authors acknowledge Zonguldak Karaelmas University Research Fund for support.

References

First citationBodey, G. P. (1992). Clin. Infect. Dis. 14, S161–S169.  CrossRef PubMed Web of Science Google Scholar
First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Farmaco, 51, 793–799.  CAS PubMed Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.  Web of Science CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Bull. Soc. Chim. Belg. 88, 265–272.  CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSengupta, A. K., Bajaj, O. P. & Chandra, U. (1978). J. Indian Chem. Soc. 55, 962–964.  CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Z. H., Guan, J. H., Hlasta, D. J., Macielag, M. J., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C. & Barrett, J. F. (1998). Bioorg. Med. Chem. Lett. 8, 1929–1934.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds