Experimental
Crystal data
[CuCl(C9H9N5)] Mr = 286.21 Triclinic, ![[P \overline 1]](teximages/gk2142fi1.gif) a = 7.3005 (15) Å b = 7.6560 (15) Å c = 9.981 (2) Å α = 80.51 (3)° β = 77.00 (3)° γ = 84.68 (3)° V = 535.23 (19) Å3 Z = 2 Mo Kα radiation μ = 2.27 mm−1 T = 293 (2) K 0.2 × 0.15 × 0.1 mm
|
Data collection
Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 ) Tmin = 0.806, Tmax = 1.000 (expected range = 0.643–0.797) 5572 measured reflections 2443 independent reflections 1918 reflections with I > 2σ(I) Rint = 0.047
|
Cu1—N1 | 1.995 (3) | Cu1—C9i | 2.026 (3) | Cu1—C8i | 2.044 (3) | Cu1—Cl3 | 2.2408 (10) | | N1—Cu1—C9i | 105.86 (13) | N1—Cu1—C8i | 143.90 (13) | C9i—Cu1—C8i | 39.16 (14) | N1—Cu1—Cl3 | 108.44 (9) | C9i—Cu1—Cl3 | 145.70 (11) | C8i—Cu1—Cl3 | 106.88 (10) | Symmetry code: (i) x, y-1, z+1. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C1—H1A⋯Cl3ii | 0.96 | 2.79 | 3.675 (4) | 154 | C2—H2A⋯N4ii | 0.96 | 2.59 | 3.379 (5) | 139 | C4—H4A⋯N4 | 0.96 | 2.57 | 2.909 (4) | 101 | C6—H6A⋯Cl3iii | 0.96 | 2.83 | 3.607 (4) | 139 | Symmetry codes: (ii) x+1, y, z; (iii) -x, -y+1, -z. | |
Data collection: CrystalClear (Rigaku, 2005
); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: PLATON (Spek, 2003
) and SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: SHELXTL.
Supporting information
A mixture of 3-(2-allyl-2H-tetrazol-5-yl)pyridine(20 mg, 0.2 mmol), CuCl (17.9 mg, 0.2 mmol) were placed in a thick Pyrex tube (ca 20 cm in length). After addition of methanol, the tube was frozen with liquid nitrogen, evacuated under vaccum, sealed with a torch and kept at 348 K. Colorless block-shaped crystals suitable for X-ray analysis were obtained after 5 d (yield 61% based on the organic ligand).
All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) and Uiso(H) = 1.5Ueq(Cmethyl).
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
catena-Poly[[chloridocopper(I)]-µ-
η2,
σ1-3-(2-allyl-2
H- tetrazol-5-yl)pyridine]
top Crystal data top [CuCl(C9H9N5)] | Z = 2 |
Mr = 286.21 | F(000) = 288 |
Triclinic, P1 | Dx = 1.776 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3005 (15) Å | Cell parameters from 5070 reflections |
b = 7.6560 (15) Å | θ = 3.2–27.5° |
c = 9.981 (2) Å | µ = 2.27 mm−1 |
α = 80.51 (3)° | T = 293 K |
β = 77.00 (3)° | Block, colorless |
γ = 84.68 (3)° | 0.2 × 0.15 × 0.1 mm |
V = 535.23 (19) Å3 | |
Data collection top Rigaku Mercury2 diffractometer | 2443 independent reflections |
Radiation source: fine-focus sealed tube | 1918 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
CCD_Profile_fitting scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −9→9 |
Tmin = 0.806, Tmax = 1 | l = −12→12 |
5572 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0388P)2] where P = (Fo2 + 2Fc2)/3 |
2443 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Crystal data top [CuCl(C9H9N5)] | γ = 84.68 (3)° |
Mr = 286.21 | V = 535.23 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3005 (15) Å | Mo Kα radiation |
b = 7.6560 (15) Å | µ = 2.27 mm−1 |
c = 9.981 (2) Å | T = 293 K |
α = 80.51 (3)° | 0.2 × 0.15 × 0.1 mm |
β = 77.00 (3)° | |
Data collection top Rigaku Mercury2 diffractometer | 2443 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1918 reflections with I > 2σ(I) |
Tmin = 0.806, Tmax = 1 | Rint = 0.047 |
5572 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.43 e Å−3 |
2443 reflections | Δρmin = −0.46 e Å−3 |
154 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.15988 (6) | −0.16243 (6) | 0.38989 (4) | 0.03499 (17) | |
Cl3 | −0.15148 (11) | −0.11291 (11) | 0.40805 (10) | 0.0362 (2) | |
N1 | 0.2905 (4) | 0.0083 (4) | 0.2319 (3) | 0.0273 (6) | |
N2 | 0.0888 (4) | 0.4924 (4) | −0.2268 (3) | 0.0288 (6) | |
N3 | 0.2403 (4) | 0.4402 (4) | −0.1738 (3) | 0.0307 (7) | |
N4 | −0.0077 (4) | 0.2863 (4) | −0.0651 (3) | 0.0365 (7) | |
N5 | −0.0620 (4) | 0.4030 (4) | −0.1640 (3) | 0.0363 (7) | |
C1 | 0.4677 (5) | 0.0501 (5) | 0.2253 (3) | 0.0345 (8) | |
H1A | 0.5306 | −0.0055 | 0.2974 | 0.039 (10)* | |
C2 | 0.5620 (5) | 0.1711 (5) | 0.1194 (4) | 0.0375 (9) | |
H2A | 0.6894 | 0.1957 | 0.1169 | 0.034 (10)* | |
C3 | 0.4697 (5) | 0.2565 (5) | 0.0182 (4) | 0.0344 (8) | |
H3A | 0.5327 | 0.3399 | −0.0568 | 0.040 (10)* | |
C4 | 0.2031 (5) | 0.0904 (4) | 0.1323 (3) | 0.0266 (7) | |
H4A | 0.0779 | 0.0591 | 0.1349 | 0.029 (9)* | |
C5 | 0.2858 (4) | 0.2174 (4) | 0.0256 (3) | 0.0256 (7) | |
C6 | 0.0802 (5) | 0.6439 (4) | −0.3365 (3) | 0.0307 (8) | |
H6A | 0.1222 | 0.7458 | −0.3100 | 0.030 (10)* | |
H6B | −0.0483 | 0.6696 | −0.3450 | 0.037 (10)* | |
C7 | 0.1745 (5) | 0.3120 (4) | −0.0734 (3) | 0.0266 (7) | |
C8 | 0.1990 (5) | 0.6128 (4) | −0.4751 (3) | 0.0303 (8) | |
H8A | 0.1838 | 0.5028 | −0.5045 | 0.028 (9)* | |
C9 | 0.3666 (5) | 0.6878 (5) | −0.5325 (4) | 0.0414 (10) | |
H9A | 0.4217 | 0.7393 | −0.4705 | 0.075 (16)* | |
H9B | 0.4567 | 0.6248 | −0.5960 | 0.066 (14)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0274 (3) | 0.0380 (3) | 0.0312 (3) | −0.00009 (18) | −0.00526 (18) | 0.01645 (19) |
Cl3 | 0.0272 (5) | 0.0346 (5) | 0.0449 (5) | −0.0015 (3) | −0.0117 (4) | 0.0051 (4) |
N1 | 0.0277 (15) | 0.0261 (14) | 0.0234 (13) | −0.0003 (11) | −0.0041 (12) | 0.0069 (11) |
N2 | 0.0307 (15) | 0.0278 (15) | 0.0243 (14) | −0.0005 (12) | −0.0062 (12) | 0.0058 (12) |
N3 | 0.0346 (16) | 0.0295 (15) | 0.0253 (14) | −0.0053 (12) | −0.0076 (13) | 0.0070 (12) |
N4 | 0.0345 (17) | 0.0377 (17) | 0.0304 (16) | −0.0084 (13) | −0.0051 (13) | 0.0160 (14) |
N5 | 0.0321 (17) | 0.0388 (18) | 0.0335 (16) | −0.0084 (13) | −0.0049 (13) | 0.0086 (14) |
C1 | 0.0304 (19) | 0.045 (2) | 0.0252 (17) | −0.0044 (16) | −0.0086 (15) | 0.0090 (16) |
C2 | 0.0280 (19) | 0.042 (2) | 0.043 (2) | −0.0100 (16) | −0.0110 (16) | 0.0004 (18) |
C3 | 0.037 (2) | 0.033 (2) | 0.0295 (18) | −0.0104 (16) | −0.0036 (16) | 0.0069 (16) |
C4 | 0.0246 (17) | 0.0270 (17) | 0.0235 (16) | −0.0051 (13) | −0.0012 (13) | 0.0061 (13) |
C5 | 0.0284 (17) | 0.0243 (16) | 0.0221 (15) | −0.0020 (13) | −0.0028 (14) | −0.0010 (13) |
C6 | 0.037 (2) | 0.0258 (18) | 0.0246 (17) | 0.0003 (15) | −0.0068 (15) | 0.0069 (14) |
C7 | 0.0304 (18) | 0.0234 (17) | 0.0223 (16) | −0.0028 (14) | −0.0014 (14) | 0.0024 (13) |
C8 | 0.036 (2) | 0.0221 (17) | 0.0275 (17) | 0.0038 (14) | −0.0066 (15) | 0.0073 (14) |
C9 | 0.0293 (19) | 0.041 (2) | 0.046 (2) | 0.0094 (16) | −0.0110 (18) | 0.0140 (18) |
Geometric parameters (Å, º) top Cu1—N1 | 1.995 (3) | C2—H2A | 0.9600 |
Cu1—C9i | 2.026 (3) | C3—C5 | 1.386 (5) |
Cu1—C8i | 2.044 (3) | C3—H3A | 0.9600 |
Cu1—Cl3 | 2.2408 (10) | C4—C5 | 1.387 (4) |
N1—C4 | 1.340 (4) | C4—H4A | 0.9601 |
N1—C1 | 1.345 (4) | C5—C7 | 1.476 (4) |
N2—N5 | 1.327 (4) | C6—C8 | 1.501 (5) |
N2—N3 | 1.332 (4) | C6—H6A | 0.9600 |
N2—C6 | 1.465 (4) | C6—H6B | 0.9600 |
N3—C7 | 1.321 (4) | C8—C9 | 1.364 (5) |
N4—N5 | 1.323 (4) | C8—Cu1ii | 2.044 (3) |
N4—C7 | 1.344 (4) | C8—H8A | 0.9600 |
C1—C2 | 1.384 (5) | C9—Cu1ii | 2.026 (3) |
C1—H1A | 0.9599 | C9—H9A | 0.9600 |
C2—C3 | 1.382 (5) | C9—H9B | 0.9600 |
| | | |
N1—Cu1—C9i | 105.86 (13) | C5—C4—H4A | 118.6 |
N1—Cu1—C8i | 143.90 (13) | C3—C5—C4 | 118.7 (3) |
C9i—Cu1—C8i | 39.16 (14) | C3—C5—C7 | 121.7 (3) |
N1—Cu1—Cl3 | 108.44 (9) | C4—C5—C7 | 119.6 (3) |
C9i—Cu1—Cl3 | 145.70 (11) | N2—C6—C8 | 113.1 (3) |
C8i—Cu1—Cl3 | 106.88 (10) | N2—C6—H6A | 108.9 |
C4—N1—C1 | 117.8 (3) | C8—C6—H6A | 108.7 |
C4—N1—Cu1 | 121.4 (2) | N2—C6—H6B | 109.0 |
C1—N1—Cu1 | 120.7 (2) | C8—C6—H6B | 109.1 |
N5—N2—N3 | 113.9 (3) | H6A—C6—H6B | 107.9 |
N5—N2—C6 | 121.6 (3) | N3—C7—N4 | 112.9 (3) |
N3—N2—C6 | 124.2 (3) | N3—C7—C5 | 123.1 (3) |
C7—N3—N2 | 101.4 (3) | N4—C7—C5 | 123.8 (3) |
N5—N4—C7 | 106.3 (3) | C9—C8—C6 | 123.7 (4) |
N4—N5—N2 | 105.5 (3) | C9—C8—Cu1ii | 69.73 (19) |
N1—C1—C2 | 122.6 (3) | C6—C8—Cu1ii | 105.9 (2) |
N1—C1—H1A | 118.6 | C9—C8—H8A | 115.7 |
C2—C1—H1A | 118.8 | C6—C8—H8A | 115.7 |
C3—C2—C1 | 119.0 (3) | Cu1ii—C8—H8A | 116.0 |
C3—C2—H2A | 120.6 | C8—C9—Cu1ii | 71.11 (19) |
C1—C2—H2A | 120.4 | C8—C9—H9A | 115.8 |
C2—C3—C5 | 118.8 (3) | Cu1ii—C9—H9A | 116.3 |
C2—C3—H3A | 120.5 | C8—C9—H9B | 117.2 |
C5—C3—H3A | 120.7 | Cu1ii—C9—H9B | 116.7 |
N1—C4—C5 | 123.0 (3) | H9A—C9—H9B | 113.5 |
N1—C4—H4A | 118.4 | | |
Symmetry codes: (i) x, y−1, z+1; (ii) x, y+1, z−1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl3iii | 0.96 | 2.79 | 3.675 (4) | 154 |
C2—H2A···N4iii | 0.96 | 2.59 | 3.379 (5) | 139 |
C4—H4A···N4 | 0.96 | 2.57 | 2.909 (4) | 101 |
C6—H6A···Cl3iv | 0.96 | 2.83 | 3.607 (4) | 139 |
Symmetry codes: (iii) x+1, y, z; (iv) −x, −y+1, −z. |
Experimental details
Crystal data |
Chemical formula | [CuCl(C9H9N5)] |
Mr | 286.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.3005 (15), 7.6560 (15), 9.981 (2) |
α, β, γ (°) | 80.51 (3), 77.00 (3), 84.68 (3) |
V (Å3) | 535.23 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.27 |
Crystal size (mm) | 0.2 × 0.15 × 0.1 |
|
Data collection |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.806, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5572, 2443, 1918 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.104, 1.16 |
No. of reflections | 2443 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.46 |
Selected geometric parameters (Å, º) topCu1—N1 | 1.995 (3) | Cu1—Cl3 | 2.2408 (10) |
Cu1—C9i | 2.026 (3) | C8—C9 | 1.364 (5) |
Cu1—C8i | 2.044 (3) | | |
| | | |
N1—Cu1—C9i | 105.86 (13) | N1—Cu1—Cl3 | 108.44 (9) |
N1—Cu1—C8i | 143.90 (13) | C9i—Cu1—Cl3 | 145.70 (11) |
C9i—Cu1—C8i | 39.16 (14) | C8i—Cu1—Cl3 | 106.88 (10) |
Symmetry code: (i) x, y−1, z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl3ii | 0.96 | 2.79 | 3.675 (4) | 153.6 |
C2—H2A···N4ii | 0.96 | 2.59 | 3.379 (5) | 139.0 |
C4—H4A···N4 | 0.96 | 2.57 | 2.909 (4) | 100.8 |
C6—H6A···Cl3iii | 0.96 | 2.83 | 3.607 (4) | 138.5 |
Symmetry codes: (ii) x+1, y, z; (iii) −x, −y+1, −z. |
Acknowledgements
This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.
References
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, W. (2008). Acta Cryst. E64, m759. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225. Web of Science PubMed CAS Google Scholar
Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Under hydrothermal or solvothermal conditions some interesting reactions occur. Often new compounds can be obtained that cannot be synthesized using conventional solution techniques. In sealed tube, unstable copper(I) salt can exist under vacuum, and thus interesting copper(I) coordination compounds can be obtained (Ye et al., 2005, 2007). The title compound, as colorless block crystals suitable for X-ray analysis, was obtained through solvothermal treatment of CuCl and 3-(2-allyl-2H-tetrazol -5-yl)pyridine in methanol at 75°C. Isostructural product was obtained when CuBr was used for the reaction (Wang, 2008).
The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands bind to the copper(I) centers through the N atom of pyridine and double bond of the allyl group (C8—C9 1.364 (5) Å). The copper atom is coordinated to two olefinic organic ligands and one terminal Cl atom in a trigonal environment (Fig 1, Table 1). The organic ligands link the neighboring Cu centers to form a homometallic Cu(I) coordination polymer developing along the c axis. Unfortunately, the N atoms of the tetrazole ring fail to coordinate to Cu(I)(Fig. 1).
Finally, weak Cu—Cl (3.136 Å), C–H···Cl and C–H···N interactions between the coordination polymers lead to the formation of the three-dimensional structure (Fig. 2).