metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m900-m901

catena-Poly[[chloridocopper(I)]-μ-η2,σ1-3-(2-allyl-2H-tetra­zol-5-yl)pyridine]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seu_ww@yahoo.com.cn

(Received 7 April 2008; accepted 9 May 2008; online 7 June 2008)

The title compound, [CuCl(C9H9N5)]n, prepared by solvo­thermal synthesis, is a new homometallic CuI–olefin coordination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra­zol-5-yl)pyridine ligands and are each bonded to one terminal Cl atom. The organic ligand acts as a bidentate ligand bridging two neighboring Cu centers through the bonds to the N atom of the pyridine ring and the double bond of the allyl group. Weak Cu⋯Cl [3.136 (8) Å), C—H⋯Cl and C—H⋯N inter­actions connect the coordination polymers into a three-dimensional structure.

Related literature

For the solvothermal synthesis and for related structures, see: Ye et al. (2005[Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208-225.],2007[Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856.]); Wang (2008[Wang, W. (2008). Acta Cryst. E64, m759.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C9H9N5)]

  • Mr = 286.21

  • Triclinic, [P \overline 1]

  • a = 7.3005 (15) Å

  • b = 7.6560 (15) Å

  • c = 9.981 (2) Å

  • α = 80.51 (3)°

  • β = 77.00 (3)°

  • γ = 84.68 (3)°

  • V = 535.23 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 (2) K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.806, Tmax = 1.000 (expected range = 0.643–0.797)

  • 5572 measured reflections

  • 2443 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.16

  • 2443 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.995 (3)
Cu1—C9i 2.026 (3)
Cu1—C8i 2.044 (3)
Cu1—Cl3 2.2408 (10)
N1—Cu1—C9i 105.86 (13)
N1—Cu1—C8i 143.90 (13)
C9i—Cu1—C8i 39.16 (14)
N1—Cu1—Cl3 108.44 (9)
C9i—Cu1—Cl3 145.70 (11)
C8i—Cu1—Cl3 106.88 (10)
Symmetry code: (i) x, y-1, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl3ii 0.96 2.79 3.675 (4) 154
C2—H2A⋯N4ii 0.96 2.59 3.379 (5) 139
C4—H4A⋯N4 0.96 2.57 2.909 (4) 101
C6—H6A⋯Cl3iii 0.96 2.83 3.607 (4) 139
Symmetry codes: (ii) x+1, y, z; (iii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Under hydrothermal or solvothermal conditions some interesting reactions occur. Often new compounds can be obtained that cannot be synthesized using conventional solution techniques. In sealed tube, unstable copper(I) salt can exist under vacuum, and thus interesting copper(I) coordination compounds can be obtained (Ye et al., 2005, 2007). The title compound, as colorless block crystals suitable for X-ray analysis, was obtained through solvothermal treatment of CuCl and 3-(2-allyl-2H-tetrazol -5-yl)pyridine in methanol at 75°C. Isostructural product was obtained when CuBr was used for the reaction (Wang, 2008).

The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands bind to the copper(I) centers through the N atom of pyridine and double bond of the allyl group (C8—C9 1.364 (5) Å). The copper atom is coordinated to two olefinic organic ligands and one terminal Cl atom in a trigonal environment (Fig 1, Table 1). The organic ligands link the neighboring Cu centers to form a homometallic Cu(I) coordination polymer developing along the c axis. Unfortunately, the N atoms of the tetrazole ring fail to coordinate to Cu(I)(Fig. 1).

Finally, weak Cu—Cl (3.136 Å), C–H···Cl and C–H···N interactions between the coordination polymers lead to the formation of the three-dimensional structure (Fig. 2).

Related literature top

For the solvothermal synthesis and for related structures, see: Ye et al. (2005,2007); Wang (2008).

Experimental top

A mixture of 3-(2-allyl-2H-tetrazol-5-yl)pyridine(20 mg, 0.2 mmol), CuCl (17.9 mg, 0.2 mmol) were placed in a thick Pyrex tube (ca 20 cm in length). After addition of methanol, the tube was frozen with liquid nitrogen, evacuated under vaccum, sealed with a torch and kept at 348 K. Colorless block-shaped crystals suitable for X-ray analysis were obtained after 5 d (yield 61% based on the organic ligand).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) and Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids shown at the 30% probability level [symmetry codes: A: x, y - 1, z + 1; B: x, y + 1, z - 1; C: x, y + 2, z - 2.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Weak interactions are shown as dashed lines.
catena-Poly[[chloridocopper(I)]-µ-η2,σ1-3-(2-allyl-2H- tetrazol-5-yl)pyridine] top
Crystal data top
[CuCl(C9H9N5)]Z = 2
Mr = 286.21F(000) = 288
Triclinic, P1Dx = 1.776 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3005 (15) ÅCell parameters from 5070 reflections
b = 7.6560 (15) Åθ = 3.2–27.5°
c = 9.981 (2) ŵ = 2.27 mm1
α = 80.51 (3)°T = 293 K
β = 77.00 (3)°Block, colorless
γ = 84.68 (3)°0.2 × 0.15 × 0.1 mm
V = 535.23 (19) Å3
Data collection top
Rigaku Mercury2
diffractometer
2443 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.806, Tmax = 1l = 1212
5572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[CuCl(C9H9N5)]γ = 84.68 (3)°
Mr = 286.21V = 535.23 (19) Å3
Triclinic, P1Z = 2
a = 7.3005 (15) ÅMo Kα radiation
b = 7.6560 (15) ŵ = 2.27 mm1
c = 9.981 (2) ÅT = 293 K
α = 80.51 (3)°0.2 × 0.15 × 0.1 mm
β = 77.00 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2443 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1918 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 1Rint = 0.047
5572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.16Δρmax = 0.43 e Å3
2443 reflectionsΔρmin = 0.46 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15988 (6)0.16243 (6)0.38989 (4)0.03499 (17)
Cl30.15148 (11)0.11291 (11)0.40805 (10)0.0362 (2)
N10.2905 (4)0.0083 (4)0.2319 (3)0.0273 (6)
N20.0888 (4)0.4924 (4)0.2268 (3)0.0288 (6)
N30.2403 (4)0.4402 (4)0.1738 (3)0.0307 (7)
N40.0077 (4)0.2863 (4)0.0651 (3)0.0365 (7)
N50.0620 (4)0.4030 (4)0.1640 (3)0.0363 (7)
C10.4677 (5)0.0501 (5)0.2253 (3)0.0345 (8)
H1A0.53060.00550.29740.039 (10)*
C20.5620 (5)0.1711 (5)0.1194 (4)0.0375 (9)
H2A0.68940.19570.11690.034 (10)*
C30.4697 (5)0.2565 (5)0.0182 (4)0.0344 (8)
H3A0.53270.33990.05680.040 (10)*
C40.2031 (5)0.0904 (4)0.1323 (3)0.0266 (7)
H4A0.07790.05910.13490.029 (9)*
C50.2858 (4)0.2174 (4)0.0256 (3)0.0256 (7)
C60.0802 (5)0.6439 (4)0.3365 (3)0.0307 (8)
H6A0.12220.74580.31000.030 (10)*
H6B0.04830.66960.34500.037 (10)*
C70.1745 (5)0.3120 (4)0.0734 (3)0.0266 (7)
C80.1990 (5)0.6128 (4)0.4751 (3)0.0303 (8)
H8A0.18380.50280.50450.028 (9)*
C90.3666 (5)0.6878 (5)0.5325 (4)0.0414 (10)
H9A0.42170.73930.47050.075 (16)*
H9B0.45670.62480.59600.066 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0274 (3)0.0380 (3)0.0312 (3)0.00009 (18)0.00526 (18)0.01645 (19)
Cl30.0272 (5)0.0346 (5)0.0449 (5)0.0015 (3)0.0117 (4)0.0051 (4)
N10.0277 (15)0.0261 (14)0.0234 (13)0.0003 (11)0.0041 (12)0.0069 (11)
N20.0307 (15)0.0278 (15)0.0243 (14)0.0005 (12)0.0062 (12)0.0058 (12)
N30.0346 (16)0.0295 (15)0.0253 (14)0.0053 (12)0.0076 (13)0.0070 (12)
N40.0345 (17)0.0377 (17)0.0304 (16)0.0084 (13)0.0051 (13)0.0160 (14)
N50.0321 (17)0.0388 (18)0.0335 (16)0.0084 (13)0.0049 (13)0.0086 (14)
C10.0304 (19)0.045 (2)0.0252 (17)0.0044 (16)0.0086 (15)0.0090 (16)
C20.0280 (19)0.042 (2)0.043 (2)0.0100 (16)0.0110 (16)0.0004 (18)
C30.037 (2)0.033 (2)0.0295 (18)0.0104 (16)0.0036 (16)0.0069 (16)
C40.0246 (17)0.0270 (17)0.0235 (16)0.0051 (13)0.0012 (13)0.0061 (13)
C50.0284 (17)0.0243 (16)0.0221 (15)0.0020 (13)0.0028 (14)0.0010 (13)
C60.037 (2)0.0258 (18)0.0246 (17)0.0003 (15)0.0068 (15)0.0069 (14)
C70.0304 (18)0.0234 (17)0.0223 (16)0.0028 (14)0.0014 (14)0.0024 (13)
C80.036 (2)0.0221 (17)0.0275 (17)0.0038 (14)0.0066 (15)0.0073 (14)
C90.0293 (19)0.041 (2)0.046 (2)0.0094 (16)0.0110 (18)0.0140 (18)
Geometric parameters (Å, º) top
Cu1—N11.995 (3)C2—H2A0.9600
Cu1—C9i2.026 (3)C3—C51.386 (5)
Cu1—C8i2.044 (3)C3—H3A0.9600
Cu1—Cl32.2408 (10)C4—C51.387 (4)
N1—C41.340 (4)C4—H4A0.9601
N1—C11.345 (4)C5—C71.476 (4)
N2—N51.327 (4)C6—C81.501 (5)
N2—N31.332 (4)C6—H6A0.9600
N2—C61.465 (4)C6—H6B0.9600
N3—C71.321 (4)C8—C91.364 (5)
N4—N51.323 (4)C8—Cu1ii2.044 (3)
N4—C71.344 (4)C8—H8A0.9600
C1—C21.384 (5)C9—Cu1ii2.026 (3)
C1—H1A0.9599C9—H9A0.9600
C2—C31.382 (5)C9—H9B0.9600
N1—Cu1—C9i105.86 (13)C5—C4—H4A118.6
N1—Cu1—C8i143.90 (13)C3—C5—C4118.7 (3)
C9i—Cu1—C8i39.16 (14)C3—C5—C7121.7 (3)
N1—Cu1—Cl3108.44 (9)C4—C5—C7119.6 (3)
C9i—Cu1—Cl3145.70 (11)N2—C6—C8113.1 (3)
C8i—Cu1—Cl3106.88 (10)N2—C6—H6A108.9
C4—N1—C1117.8 (3)C8—C6—H6A108.7
C4—N1—Cu1121.4 (2)N2—C6—H6B109.0
C1—N1—Cu1120.7 (2)C8—C6—H6B109.1
N5—N2—N3113.9 (3)H6A—C6—H6B107.9
N5—N2—C6121.6 (3)N3—C7—N4112.9 (3)
N3—N2—C6124.2 (3)N3—C7—C5123.1 (3)
C7—N3—N2101.4 (3)N4—C7—C5123.8 (3)
N5—N4—C7106.3 (3)C9—C8—C6123.7 (4)
N4—N5—N2105.5 (3)C9—C8—Cu1ii69.73 (19)
N1—C1—C2122.6 (3)C6—C8—Cu1ii105.9 (2)
N1—C1—H1A118.6C9—C8—H8A115.7
C2—C1—H1A118.8C6—C8—H8A115.7
C3—C2—C1119.0 (3)Cu1ii—C8—H8A116.0
C3—C2—H2A120.6C8—C9—Cu1ii71.11 (19)
C1—C2—H2A120.4C8—C9—H9A115.8
C2—C3—C5118.8 (3)Cu1ii—C9—H9A116.3
C2—C3—H3A120.5C8—C9—H9B117.2
C5—C3—H3A120.7Cu1ii—C9—H9B116.7
N1—C4—C5123.0 (3)H9A—C9—H9B113.5
N1—C4—H4A118.4
Symmetry codes: (i) x, y1, z+1; (ii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl3iii0.962.793.675 (4)154
C2—H2A···N4iii0.962.593.379 (5)139
C4—H4A···N40.962.572.909 (4)101
C6—H6A···Cl3iv0.962.833.607 (4)139
Symmetry codes: (iii) x+1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CuCl(C9H9N5)]
Mr286.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3005 (15), 7.6560 (15), 9.981 (2)
α, β, γ (°)80.51 (3), 77.00 (3), 84.68 (3)
V3)535.23 (19)
Z2
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.806, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
5572, 2443, 1918
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.16
No. of reflections2443
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.46

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.995 (3)Cu1—Cl32.2408 (10)
Cu1—C9i2.026 (3)C8—C91.364 (5)
Cu1—C8i2.044 (3)
N1—Cu1—C9i105.86 (13)N1—Cu1—Cl3108.44 (9)
N1—Cu1—C8i143.90 (13)C9i—Cu1—Cl3145.70 (11)
C9i—Cu1—C8i39.16 (14)C8i—Cu1—Cl3106.88 (10)
Symmetry code: (i) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl3ii0.962.793.675 (4)153.6
C2—H2A···N4ii0.962.593.379 (5)139.0
C4—H4A···N40.962.572.909 (4)100.8
C6—H6A···Cl3iii0.962.833.607 (4)138.5
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. (2008). Acta Cryst. E64, m759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225.  Web of Science PubMed CAS Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m900-m901
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds