organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl anthracene-9-carboxyl­ate

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H Abdullaev 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: bahtier@academy.uzsci.net

(Received 28 April 2008; accepted 12 June 2008; online 19 June 2008)

In the title compound, C17H14O2, the COO group and the anthracene fragment form a dihedral angle of 76.00 (19)°. The torsion angle around the O—Csp3 bond of the ester group is 108.52 (18)°. The crystal structure is stabilized by C—H⋯O inter­actions and edge-to-face arene inter­actions with C—H⋯(ring centroid) distances in the range 2.75–2.84 Å.

Related literature

For related crystal structures, see: Bart & Schmidt (1971[Bart, J. C. J. & Schmidt, J. (1971). Isr. J. Chem. 9, 429-448.]); Heller & Schmidt (1971[Heller, E. & Schmidt, J. (1971). Isr. J. Chem. 9, 449-462.]); Sweeting et al. (1997[Sweeting, L. M., Rheingold, A. L., Gingerich, J. M., Rutter, A. W., Spence, R. A., Cox, C. D. & Kim, T. J. (1997). Chem. Mater. 9, 1103-1115.]). For the preparation of the title compound, see: Larsen & Harpp (1980[Larsen, C. & Harpp, D. N. (1980). J. Org. Chem. 45, 3713-3716.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O2

  • Mr = 250.28

  • Orthorhombic, P n a 21

  • a = 8.5431 (6) Å

  • b = 10.2137 (7) Å

  • c = 14.5426 (11) Å

  • V = 1268.94 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 (2) K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 15373 measured reflections

  • 2020 independent reflections

  • 1600 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.04

  • 2020 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.53 3.302 (2) 140
Symmetry code: (i) [-x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

9-Anthracenecarboxylic acid esters are of current interest in materials science (Sweeting et al., 1997). The conformational features of the title compound (Fig. 1) resemble those found in the crystal structure of the analogous methyl 9-anthracenecarboxylate (Bart & Schmidt, 1971). A comparative examination of the crystal structures, however, reveals that a slight modification of the molecular structure has a fundamental influence on the molecular packing mode. According to the presence of a twofold screw axis, helical hydrogen bonded strands (Table 1, Fig. 2) running along the c axis are the basic supramolecular entities of the present crystal structure. Furthermore, the anthracene units of neighbouring strands are arranged in "edge-to-face" herringbone fashion with the closest intermolecular distance of 2.86 Å.

Related literature top

For related crystal structures, see: Bart & Schmidt (1971); Heller & Schmidt (1971); Sweeting et al. (1997). For the preparation of the title compound, see: Larsen & Harpp (1980).

Experimental top

9-Anthracenecarbonyl chloride (300 mg) in CH2Cl2 (45 ml) was reacted with ethanol (10 ml) and pyridine (2 ml). The resulting solution was heated under reflux for 11 h, then cooled to room temperature and subsequently extracted three times with 2 N aqueous HCl and water (50 ml, each), and finally two times with water (100 ml). After addition of CH2Cl2 (200 ml) the organic layer was dried over CaCl2 and the solvent removed under reduced pressure. Recrystallization of the white powder from acetone yielded colourless crystals suitable for X-ray diffraction analysis. (82%, m.p. 381–382 K). Anal. Calcd. for C17H14O2: C 81.58; H 5.64; Found: C 81.42; H 5.90%.

Refinement top

In absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement. All hydrogen atoms were positioned geometrically and refined using the riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 and 0.97 Å, Uiso = 1.2Ueq(C) for CH2 H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atomic labels and 50% probability displacement ellipsoids for non H-atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis.
Ethyl anthracene-9-carboxylate top
Crystal data top
C17H14O2F(000) = 528
Mr = 250.28Dx = 1.310 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4881 reflections
a = 8.5431 (6) Åθ = 2.4–30.5°
b = 10.2137 (7) ŵ = 0.09 mm1
c = 14.5426 (11) ÅT = 153 K
V = 1268.94 (16) Å3Irregular, colourless
Z = 40.25 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 30.6°, θmin = 2.4°
ϕ and ω scansh = 1112
15373 measured reflectionsk = 1214
2020 independent reflectionsl = 2013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
2020 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C17H14O2V = 1268.94 (16) Å3
Mr = 250.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.5431 (6) ŵ = 0.09 mm1
b = 10.2137 (7) ÅT = 153 K
c = 14.5426 (11) Å0.25 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1600 reflections with I > 2σ(I)
15373 measured reflectionsRint = 0.047
2020 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2020 reflectionsΔρmin = 0.17 e Å3
174 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3, δ, p.p.m.): 1.53 (m, CH3); 4.68 (q, 3J=7.2 Hz, OCH2, 2H); 7.45 (m, H2, H3, H6, H7, 4H); 8.03 (t, H1, H4, H5, H8, 4H); 8.54 (t, H10, 1H). 13C-NMR (100 MHz, CDCl3, δ, p.p.m.): 13.70 (CH3), 61.70 (OCH2), 125.17 (C1, C8), 125.86 (C3, C6), 127.25 (C2, C7); 128.37 (C9, C4a, C10a); 128.89 (C4, C5); 129.23 (C10); 131.35 (C8a, C9a); 169.10 (CŌ). IR (KBr, cm-1): 3079 (w), 3053 (w)(C–Har); 2981 (m), 2929, 2904, 2867 (C–H); 1952; 1802; 1715 (C?O); 1626; 1564; 1522; 1467; 1455; 1420; 1388; 1372; 1352; 1321; 1288; 1264; 1238; 1216; 1171; 1151; 1119; 1099; 1025; 974; 957; 935; 897; 866; 846; 810; 740; 671; 633; 607; 560; 529; 452. GC—MS m/z 250 (100, M+), 235, 222, 205, 177, 151, 139, 126, 102, 88, 75, 51.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13453 (17)0.82389 (13)0.03306 (11)0.0430 (4)
O20.30770 (15)0.75339 (12)0.07149 (10)0.0316 (3)
C10.28393 (19)0.97928 (15)0.05261 (11)0.0195 (3)
C20.23153 (19)1.03155 (15)0.13680 (11)0.0198 (3)
C30.1270 (2)0.96373 (17)0.19647 (11)0.0233 (4)
H30.09190.88050.18060.028*
C40.0777 (2)1.01972 (17)0.27676 (12)0.0264 (4)
H40.00820.97470.31450.032*
C50.1310 (2)1.14542 (18)0.30335 (12)0.0269 (4)
H50.09731.18180.35850.032*
C60.2313 (2)1.21299 (17)0.24865 (12)0.0249 (4)
H60.26621.29510.26720.030*
C70.2840 (2)1.16012 (15)0.16313 (11)0.0206 (3)
C80.3840 (2)1.22952 (16)0.10477 (12)0.0222 (3)
H80.41851.31210.12260.027*
C90.4334 (2)1.17882 (15)0.02076 (11)0.0210 (3)
C100.5365 (2)1.24932 (16)0.03850 (12)0.0269 (4)
H100.57011.33250.02160.032*
C110.5865 (2)1.19688 (18)0.11930 (14)0.0307 (4)
H110.65441.24410.15670.037*
C120.5355 (2)1.07060 (19)0.14688 (12)0.0294 (4)
H120.57001.03580.20240.035*
C130.4366 (2)1.00008 (16)0.09291 (11)0.0256 (4)
H130.40400.91760.11220.031*
C140.38172 (19)1.05069 (16)0.00681 (11)0.0201 (3)
C150.2313 (2)0.84551 (16)0.02446 (12)0.0224 (3)
C160.2630 (2)0.61657 (16)0.05647 (15)0.0336 (4)
H16A0.35560.56400.04540.040*
H16B0.19540.61000.00310.040*
C170.1792 (2)0.56759 (19)0.13964 (15)0.0366 (5)
H17A0.24380.58020.19290.055*
H17B0.15690.47600.13240.055*
H17C0.08300.61500.14710.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0469 (9)0.0323 (8)0.0498 (9)0.0006 (6)0.0262 (8)0.0080 (6)
O20.0389 (8)0.0185 (5)0.0374 (7)0.0030 (5)0.0137 (6)0.0007 (5)
C10.0205 (8)0.0176 (7)0.0204 (7)0.0016 (6)0.0040 (6)0.0016 (6)
C20.0201 (8)0.0202 (7)0.0192 (7)0.0007 (6)0.0040 (6)0.0016 (6)
C30.0239 (9)0.0218 (8)0.0243 (9)0.0021 (6)0.0015 (7)0.0004 (6)
C40.0260 (9)0.0292 (9)0.0239 (8)0.0010 (7)0.0038 (7)0.0037 (7)
C50.0303 (10)0.0298 (9)0.0204 (8)0.0032 (7)0.0022 (7)0.0041 (7)
C60.0293 (10)0.0210 (8)0.0245 (8)0.0005 (7)0.0007 (8)0.0047 (7)
C70.0220 (9)0.0190 (7)0.0208 (7)0.0012 (6)0.0019 (6)0.0014 (6)
C80.0241 (9)0.0190 (8)0.0235 (8)0.0008 (6)0.0015 (7)0.0016 (6)
C90.0203 (8)0.0203 (7)0.0225 (7)0.0015 (6)0.0011 (7)0.0012 (6)
C100.0262 (10)0.0257 (8)0.0289 (9)0.0027 (7)0.0001 (7)0.0017 (7)
C110.0293 (10)0.0337 (10)0.0292 (9)0.0003 (8)0.0066 (8)0.0068 (8)
C120.0298 (10)0.0361 (10)0.0222 (8)0.0067 (8)0.0039 (7)0.0006 (7)
C130.0286 (10)0.0246 (8)0.0235 (8)0.0021 (7)0.0007 (7)0.0039 (6)
C140.0198 (8)0.0206 (7)0.0200 (8)0.0025 (6)0.0021 (6)0.0014 (6)
C150.0232 (9)0.0235 (7)0.0205 (7)0.0007 (6)0.0009 (7)0.0026 (7)
C160.0422 (11)0.0181 (8)0.0407 (10)0.0045 (7)0.0063 (9)0.0034 (7)
C170.0353 (11)0.0302 (10)0.0443 (11)0.0068 (8)0.0071 (9)0.0026 (9)
Geometric parameters (Å, º) top
O1—C151.197 (2)C8—H80.9300
O2—C151.334 (2)C9—C101.427 (2)
O2—C161.465 (2)C9—C141.438 (2)
C1—C141.406 (2)C10—C111.360 (3)
C1—C21.409 (2)C10—H100.9300
C1—C151.495 (2)C11—C121.419 (3)
C2—C31.425 (2)C11—H110.9300
C2—C71.439 (2)C12—C131.360 (3)
C3—C41.367 (2)C12—H120.9300
C3—H30.9300C13—C141.433 (2)
C4—C51.416 (3)C13—H130.9300
C4—H40.9300C16—C171.492 (3)
C5—C61.357 (3)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—C71.429 (2)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—C81.397 (2)C17—H17C0.9600
C8—C91.393 (2)
C15—O2—C16117.96 (15)C11—C10—H10119.4
C14—C1—C2121.76 (14)C9—C10—H10119.4
C14—C1—C15118.97 (15)C10—C11—C12120.39 (17)
C2—C1—C15119.25 (15)C10—C11—H11119.8
C1—C2—C3122.97 (14)C12—C11—H11119.8
C1—C2—C7118.56 (14)C13—C12—C11120.60 (17)
C3—C2—C7118.46 (14)C13—C12—H12119.7
C4—C3—C2120.66 (16)C11—C12—H12119.7
C4—C3—H3119.7C12—C13—C14121.09 (16)
C2—C3—H3119.7C12—C13—H13119.5
C3—C4—C5120.90 (17)C14—C13—H13119.5
C3—C4—H4119.6C1—C14—C13122.97 (15)
C5—C4—H4119.6C1—C14—C9118.88 (14)
C6—C5—C4120.27 (16)C13—C14—C9118.12 (15)
C6—C5—H5119.9O1—C15—O2124.50 (15)
C4—C5—H5119.9O1—C15—C1124.58 (15)
C5—C6—C7121.11 (16)O2—C15—C1110.92 (14)
C5—C6—H6119.4O2—C16—C17108.92 (16)
C7—C6—H6119.4O2—C16—H16A109.9
C8—C7—C6121.98 (15)C17—C16—H16A109.9
C8—C7—C2119.44 (14)O2—C16—H16B109.9
C6—C7—C2118.58 (15)C17—C16—H16B109.9
C9—C8—C7121.98 (15)H16A—C16—H16B108.3
C9—C8—H8119.0C16—C17—H17A109.5
C7—C8—H8119.0C16—C17—H17B109.5
C8—C9—C10121.96 (15)H17A—C17—H17B109.5
C8—C9—C14119.34 (15)C16—C17—H17C109.5
C10—C9—C14118.69 (15)H17A—C17—H17C109.5
C11—C10—C9121.11 (16)H17B—C17—H17C109.5
C14—C1—C2—C3177.19 (15)C9—C10—C11—C120.6 (3)
C15—C1—C2—C31.3 (2)C10—C11—C12—C130.2 (3)
C14—C1—C2—C71.8 (2)C11—C12—C13—C140.3 (3)
C15—C1—C2—C7179.65 (14)C2—C1—C14—C13179.90 (15)
C1—C2—C3—C4178.95 (16)C15—C1—C14—C131.4 (2)
C7—C2—C3—C40.1 (2)C2—C1—C14—C92.0 (2)
C2—C3—C4—C51.0 (3)C15—C1—C14—C9179.43 (15)
C3—C4—C5—C60.7 (3)C12—C13—C14—C1177.67 (17)
C4—C5—C6—C70.6 (3)C12—C13—C14—C90.4 (3)
C5—C6—C7—C8178.35 (17)C8—C9—C14—C10.8 (2)
C5—C6—C7—C21.5 (3)C10—C9—C14—C1178.09 (15)
C1—C2—C7—C80.3 (2)C8—C9—C14—C13178.94 (15)
C3—C2—C7—C8178.70 (16)C10—C9—C14—C130.1 (2)
C1—C2—C7—C6179.79 (16)C16—O2—C15—O14.4 (3)
C3—C2—C7—C61.2 (2)C16—O2—C15—C1176.17 (15)
C6—C7—C8—C9178.99 (16)C14—C1—C15—O174.0 (2)
C2—C7—C8—C90.9 (3)C2—C1—C15—O1104.6 (2)
C7—C8—C9—C10179.49 (16)C14—C1—C15—O2105.43 (17)
C7—C8—C9—C140.7 (3)C2—C1—C15—O276.00 (19)
C8—C9—C10—C11178.42 (18)C15—O2—C16—C17108.52 (18)
C14—C9—C10—C110.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.533.302 (2)140
Symmetry code: (i) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14O2
Mr250.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)153
a, b, c (Å)8.5431 (6), 10.2137 (7), 14.5426 (11)
V3)1268.94 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15373, 2020, 1600
Rint0.047
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.04
No. of reflections2020
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.533.302 (2)140.4
Symmetry code: (i) x, y+2, z+1/2.
 

Acknowledgements

Financial support from the German Federal Ministry of Economics and Technology (BMWi) under grant No. 16IN0218 `ChemoChips' is gratefully acknowledged. L. M. S. F. Bendrath thanks Dr T. Gruber for supervision of her practical work.

References

First citationBart, J. C. J. & Schmidt, J. (1971). Isr. J. Chem. 9, 429–448.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeller, E. & Schmidt, J. (1971). Isr. J. Chem. 9, 449–462.  CrossRef CAS Google Scholar
First citationLarsen, C. & Harpp, D. N. (1980). J. Org. Chem. 45, 3713–3716.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSweeting, L. M., Rheingold, A. L., Gingerich, J. M., Rutter, A. W., Spence, R. A., Cox, C. D. & Kim, T. J. (1997). Chem. Mater. 9, 1103–1115.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds