organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-hy­droxy­ethyl)benzene-1,4-dicarboxamide

aInstitute of Physics, University of Silesia, 40-007 Katowice, Poland, and bDepartment of Environmental Chemistry and Technology, Institute of Chemistry, University of Silesia, 40-007 Katowice, Poland
*Correspondence e-mail: gbednare@us.edu.pl

(Received 20 May 2008; accepted 10 June 2008; online 19 June 2008)

The mol­ecule of the title compound, C12H16N2O4, is centrosymmetric and the amide group is twisted relative to the benzene ring by 14.40 (13)°. The mol­ecules are hydrogen bonded into a three-dimensional framework, with the hydr­oxy O atoms acting as acceptors in N—H⋯O hydrogen bonds and as donors in O—H⋯O=C inter­actions.

Related literature

For the synthesis of the title compound, see: Sułkowski et al. (2000[Sułkowski, W. W., Ossowski, J., Sułkowska, A. & Bajdur, W. (2000). Abstract. 1st International Conference `Modification, Degradation and Stabilization of Polymers', p. P11, Palermo, Italy.]); Shukla & Harad (2006[Shukla, S. R. & Harad, A. M. (2006). Polym. Degrad. Stabil. 91, 1850-1854.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O4

  • Mr = 252.27

  • Monoclinic, P 21 /c

  • a = 4.9062 (4) Å

  • b = 13.6467 (10) Å

  • c = 8.8840 (7) Å

  • β = 97.262 (6)°

  • V = 590.04 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 (1) K

  • 0.26 × 0.22 × 0.18 mm

Data collection
  • Oxford Diffraction KM-4-CCD Sapphire3 diffractometer

  • Absorption correction: none

  • 5655 measured reflections

  • 2000 independent reflections

  • 1599 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.02

  • 2000 reflections

  • 114 parameters

  • All H-atom parameters refined

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3⋯O2i 0.879 (16) 2.080 (16) 2.9333 (10) 163.3 (13)
O2—H8⋯O1ii 0.863 (18) 1.872 (18) 2.7204 (9) 167.1 (15)
C2—H2⋯O2i 0.972 (15) 2.412 (14) 3.3458 (11) 161.0 (11)
C5—H4⋯O1ii 0.988 (12) 2.523 (12) 3.2738 (12) 132.6 (9)
C5—H5⋯O1iii 0.992 (13) 2.612 (13) 3.5671 (12) 161.7 (11)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyethylene terephthalate (PET) is a very popular thermoplastic polyester. The chemical recycling of its wastes has been the subject of keen interest as a valuable material for different chemical processes. Aminolysis of PET yields N, N' - bis(2-hydroxyethyl)benzene-1,4-dicarboxamide, which can be a potential candidate for further reactions leading to obtain other useful products. To get information about the hydrogen bonding in this interesting material we determined its crystal structure. In crystal the title molecule is located around inversion center (Fig. 1.).

The value of the C2—C3—C4 angle of 123.58 (7)° is in agreement with a geometry of the Ph—C(=O)—NH—CH2 subunit. A search of the Cambridge Structural Database [version 5.28; Allen, 2002] shows that in similar compounds this angle is consistently greater than 120° with the mean value of 122.46 (8)°. The widening of this angle can be related to a steric hindrance between H3 of the amide group and H atom attached to C2, as the consequence of a small twist of the amide group relative to the benzene ring. The torsion angles around the C—C bond between the amide group and the benzene ring are: C1—C3—C4—O1 14.40 (13)° and C2—C3—C4—N1 14.74 (13)°.

The molecules of the title compound are connected via N—H···O, O—H···O and C—H···O hydrogen bonds (Fig. 2; Table 1) into a three-dimensional framework. All N and O atoms participate in hydrogen bonding. The IR spectrum of the title compound shows bands corresponding to the N—H and O—H stretching vibrations in the 3370 - 2480 cm-1 region. The center of gravity of the νN—H and νO—H bands is located at ca 2960 cm-1. The relative shifts of about 440 cm-1 and 640 cm-1 for N—H and O—H bands allow to classify the N—H···O and O—H···O interactions in this crystal as strong hydrogen bonds (Desiraju & Steiner, 1999).

Related literature top

For the synthesis of the title compound, see: Sułkowski et al. (2000); Shukla & Harad (2006). For bond-length data, see: Allen (2002). For hydrogen bonding, see: Desiraju & Steiner (1999).

Experimental top

The title compound was obtained according to the method described by Sułkowski et al. (2000) and Shukla & Harad (2006). Single crystal suitable for X-ray analysis was obtained from water solution. Analysis calculated: C 57.13, H 6.39, N 11.10%; found C 57.12, H 6.26, N 10.93%. IR spectra were recorded with the Perkin-Elmer Spectrum.

Refinement top

All H atoms were located in a difference Fourier map and freely refined with isotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The H-atom radius is arbitrary. Symmetry code: (a) -x, -y + 1, -z + 1
[Figure 2] Fig. 2. Packing diagram for the title compound. Hydrogen bonds are shown with dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
N,N'-Bis(2-hydroxyethyl)benzene-1,4-dicarboxamide top
Crystal data top
C12H16N2O4F(000) = 268
Mr = 252.27Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3594 reflections
a = 4.9062 (4) Åθ = 3.0–32.8°
b = 13.6467 (10) ŵ = 0.11 mm1
c = 8.8840 (7) ÅT = 200 K
β = 97.262 (6)°Needle, colourless
V = 590.04 (8) Å30.26 × 0.22 × 0.18 mm
Z = 2
Data collection top
Oxford Diffraction KM-4-CCD Sapphire3
diffractometer
1599 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 32.9°, θmin = 3.0°
Detector resolution: 16.0328 pixels mm-1h = 75
ω scansk = 1919
5655 measured reflectionsl = 1312
2000 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.0884P]
where P = (Fo2 + 2Fc2)/3
2000 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H16N2O4V = 590.04 (8) Å3
Mr = 252.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9062 (4) ŵ = 0.11 mm1
b = 13.6467 (10) ÅT = 200 K
c = 8.8840 (7) Å0.26 × 0.22 × 0.18 mm
β = 97.262 (6)°
Data collection top
Oxford Diffraction KM-4-CCD Sapphire3
diffractometer
1599 reflections with I > 2σ(I)
5655 measured reflectionsRint = 0.014
2000 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.03Δρmax = 0.34 e Å3
2000 reflectionsΔρmin = 0.21 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27008 (15)0.27588 (5)0.35222 (8)0.03059 (17)
H80.422 (3)0.3500 (13)0.1314 (17)0.051 (4)*
O20.50462 (15)0.40412 (5)0.10308 (8)0.02923 (17)
N10.45385 (15)0.39818 (5)0.22776 (8)0.02234 (16)
H30.470 (3)0.4611 (12)0.2100 (16)0.043 (4)*
C10.0348 (2)0.59732 (6)0.45869 (11)0.02646 (19)
H10.063 (3)0.6650 (11)0.4282 (15)0.037 (3)*
C20.1105 (2)0.53512 (7)0.37400 (10)0.02685 (19)
H20.183 (3)0.5608 (11)0.2851 (16)0.044 (4)*
C30.14642 (16)0.43721 (6)0.41503 (9)0.01995 (16)
C40.29698 (17)0.36475 (6)0.32869 (9)0.02059 (16)
C50.61451 (18)0.33030 (6)0.14753 (10)0.02380 (17)
H40.493 (2)0.2750 (9)0.1119 (13)0.028 (3)*
H50.772 (3)0.3050 (10)0.2180 (15)0.037 (3)*
C60.71991 (19)0.37877 (7)0.01299 (11)0.02745 (19)
H60.851 (3)0.3331 (10)0.0254 (15)0.039 (3)*
H70.816 (2)0.4390 (10)0.0435 (14)0.029 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0417 (4)0.0180 (3)0.0354 (4)0.0064 (3)0.0175 (3)0.0056 (2)
O20.0438 (4)0.0192 (3)0.0259 (3)0.0063 (3)0.0089 (3)0.0005 (2)
N10.0275 (4)0.0175 (3)0.0238 (3)0.0003 (2)0.0099 (3)0.0013 (2)
C10.0365 (5)0.0179 (4)0.0276 (4)0.0047 (3)0.0145 (3)0.0056 (3)
C20.0372 (5)0.0203 (4)0.0260 (4)0.0041 (3)0.0155 (3)0.0052 (3)
C30.0229 (4)0.0182 (3)0.0196 (3)0.0017 (3)0.0057 (3)0.0014 (3)
C40.0234 (3)0.0188 (4)0.0200 (3)0.0025 (3)0.0044 (3)0.0014 (3)
C50.0270 (4)0.0214 (4)0.0243 (4)0.0037 (3)0.0083 (3)0.0013 (3)
C60.0288 (4)0.0252 (4)0.0310 (4)0.0020 (3)0.0140 (3)0.0027 (3)
Geometric parameters (Å, º) top
O1—C41.2404 (10)C3—C1i1.3913 (12)
O2—H80.863 (18)C3—C41.5017 (11)
N1—C41.3338 (11)C5—H40.988 (12)
N1—C51.4594 (11)C5—H50.992 (13)
N1—H30.879 (16)C6—O21.4224 (12)
C1—H10.967 (14)C6—C51.5133 (12)
C2—C11.3896 (12)C6—H60.989 (14)
C2—C31.3902 (12)C6—H70.970 (13)
C2—H20.972 (15)
C3—C2—C1120.12 (8)C2—C3—C4123.58 (7)
C3—C2—H2120.8 (9)C1i—C3—C4117.25 (7)
C1—C2—H2119.0 (9)N1—C5—C6111.58 (7)
O2—C6—C5112.48 (7)N1—C5—H4107.5 (7)
O2—C6—H7106.7 (7)C6—C5—H4109.4 (7)
C5—C6—H7110.7 (7)N1—C5—H5109.7 (8)
O2—C6—H6111.1 (8)C6—C5—H5109.6 (8)
C5—C6—H6107.4 (8)H4—C5—H5108.9 (10)
H7—C6—H6108.4 (10)O1—C4—N1122.04 (8)
C6—O2—H8106.3 (10)O1—C4—C3119.21 (7)
C4—N1—C5120.29 (7)N1—C4—C3118.75 (7)
C4—N1—H3122.0 (9)C2—C1—C3i120.73 (8)
C5—N1—H3117.7 (9)C2—C1—H1119.7 (8)
C2—C3—C1i119.16 (7)C3i—C1—H1119.6 (8)
C1—C2—C3—C1i0.09 (16)C2—C3—C4—O1164.62 (9)
C1—C2—C3—C4179.10 (8)C1i—C3—C4—O114.40 (13)
C4—N1—C5—C6165.93 (8)C2—C3—C4—N114.74 (13)
O2—C6—C5—N166.81 (10)C1i—C3—C4—N1166.23 (8)
C5—N1—C4—O13.87 (13)C3—C2—C1—C3i0.09 (16)
C5—N1—C4—C3176.78 (7)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···O2ii0.879 (16)2.080 (16)2.9333 (10)163.3 (13)
O2—H8···O1iii0.863 (18)1.872 (18)2.7204 (9)167.1 (15)
C2—H2···O2ii0.972 (15)2.412 (14)3.3458 (11)161.0 (11)
C5—H4···O1iii0.988 (12)2.523 (12)3.2738 (12)132.6 (9)
C5—H5···O1iv0.992 (13)2.612 (13)3.5671 (12)161.7 (11)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H16N2O4
Mr252.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)4.9062 (4), 13.6467 (10), 8.8840 (7)
β (°) 97.262 (6)
V3)590.04 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerOxford Diffraction KM-4-CCD Sapphire3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5655, 2000, 1599
Rint0.014
(sin θ/λ)max1)0.763
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections2000
No. of parameters114
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···O2i0.879 (16)2.080 (16)2.9333 (10)163.3 (13)
O2—H8···O1ii0.863 (18)1.872 (18)2.7204 (9)167.1 (15)
C2—H2···O2i0.972 (15)2.412 (14)3.3458 (11)161.0 (11)
C5—H4···O1ii0.988 (12)2.523 (12)3.2738 (12)132.6 (9)
C5—H5···O1iii0.992 (13)2.612 (13)3.5671 (12)161.7 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, S. R. & Harad, A. M. (2006). Polym. Degrad. Stabil. 91, 1850–1854.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSułkowski, W. W., Ossowski, J., Sułkowska, A. & Bajdur, W. (2000). Abstract. 1st International Conference `Modification, Degradation and Stabilization of Polymers', p. P11, Palermo, Italy.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds