metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aquadi-n-but­yl(5-methyl­pyrazine-2-carboxyl­ato)tin(IV) methanol solvate

aDeapartment of Chemistry, Jining University, Shandong 273155, People's Republic of China
*Correspondence e-mail: zhongjungao@yahoo.cn

(Received 23 April 2008; accepted 28 May 2008; online 7 June 2008)

In the monomeric title compound, [Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH3OH, the Sn atom is seven-coordinate, displaying a distorted penta­gonal bipyramidal SnC2N2O3 geometry with the two C atoms in the axial sites. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the complex and solvent mol­ecules into infinite chains.

Related literature

For general background, see: Gielen et al. (1988[Gielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873-876.]). For a related structure, see: Ma et al. (2004[Ma, C., Han, Y., Zhang, R. & Wang, D. (2004). J. Chem. Soc. Dalton Trans. pp. 1832-1840.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4O

  • Mr = 557.21

  • Monoclinic, C 2/c

  • a = 20.609 (5) Å

  • b = 17.119 (4) Å

  • c = 14.558 (3) Å

  • β = 98.178 (3)°

  • V = 5084 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 298 (2) K

  • 0.58 × 0.56 × 0.49 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.582, Tmax = 0.628

  • 12959 measured reflections

  • 4462 independent reflections

  • 2981 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.122

  • S = 1.12

  • 4462 reflections

  • 289 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C17 2.103 (5)
Sn1—C13 2.107 (6)
Sn1—O1 2.161 (4)
Sn1—O3 2.167 (4)
Sn1—N1 2.481 (4)
Sn1—N3 2.635 (5)
Sn1—O5 2.770 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O6 0.85 1.92 2.755 (6) 169
O5—H2⋯O1i 0.85 2.19 3.039 (5) 172
O6—H6⋯O4i 0.82 1.93 2.703 (6) 156
Symmetry code: (i) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Self-assembled organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities (Gielen et al., 1988). 2-Methylpyrazine-5-carboxylic acid is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers, and small changes in experimental conditions can lead to very different architectures.

The title compound, (I), consists of two butyl, two N,O-bidentate 2-methylpyrazine-5-carboxylate groups and a water molecule bonded to the Sn atom and has a monomeric structure. The Sn atom is seven-coordinate with a distorted pentagonal bipyramidal SnC2N2O3 geometry (Table 1, Fig. 1). Around the central Sn atom, atoms C13 and C17 of the two butyl groups occupy the axial position, while O and N atoms lie in equatorial positions. The sum of the angles between the tin atom and the equatorial atoms is 360.4°. The axial bond angle C17—Sn1—C13 [161.6 (3)°] deviates from linearity by over 18°, which shows that these atoms have significant deviations from ideal pentagonal bipyramidal geometry. Otherwise, the bond lenghts and angles in (I) are similar to those in related structures (Ma et al., 2004).

In the crystal, strong intermolecular O—H···O hydrogen bonds (Table 2) between O atoms of the carboxyl groups, methanol and coordinate water molecules result in the formation of one-dimensional polymeric chains (Fig. 2).

Related literature top

For general background, see: Gielen et al. (1988). For a related structure, see: Ma et al. (2004).

Experimental top

A mixture of dibutyltin dichloride (1.0 mmol, 0.304 g), 2-methylpyrazine-5-carboxylic acid (2.0 mmol, 0.276 g) and sodium ethoxide (0.136 g, 2.0 mmol) in ethanol (with 5% water) (80 ml) was heated under reflux for 8 h at 303 K. The resulting clear solution was evaporated under vacuum and the product recrystallized from a mixture of methanol to yield colourless, blocks of (I). Yield 0.452 g, 78%, m.p. 438 K, analysis, calculated for C21H34N4O6Sn: C 45.26, H, 6.15; N 10.05%; found: C 45.39, H 6.29, N, 10.12%.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å, O—H = 0.82–0.85 Å) and refined as riding with Uiso(H) = 1.2Ueq(C/O) or 1.5Ueq(methyl C)

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The hydrogen bond is indicated by a double-dashed line.
[Figure 2] Fig. 2. Packing diagram of the crystal structure of (I), showing the one-dimensional chains that form along the c axis. H atoms are omitted for clarity and dashed lines link the donor and acceptor O atoms of the hydrogen bonds.
Aquadi-n-butyl(5-methylpyrazine-2-carboxylato)tin(IV) methanol solvate top
Crystal data top
[Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4OF(000) = 2288
Mr = 557.21Dx = 1.456 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4606 reflections
a = 20.609 (5) Åθ = 2.4–25.3°
b = 17.119 (4) ŵ = 1.05 mm1
c = 14.558 (3) ÅT = 298 K
β = 98.178 (3)°Block, colourless
V = 5084 (2) Å30.58 × 0.56 × 0.49 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4462 independent reflections
Radiation source: fine-focus sealed tube2981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1524
Tmin = 0.582, Tmax = 0.628k = 2020
12959 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0455P)2 + 11.2132P]
where P = (Fo2 + 2Fc2)/3
4462 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.58 e Å3
12 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4OV = 5084 (2) Å3
Mr = 557.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.609 (5) ŵ = 1.05 mm1
b = 17.119 (4) ÅT = 298 K
c = 14.558 (3) Å0.58 × 0.56 × 0.49 mm
β = 98.178 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4462 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2981 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.628Rint = 0.039
12959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03612 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0455P)2 + 11.2132P]
where P = (Fo2 + 2Fc2)/3
4462 reflectionsΔρmax = 0.58 e Å3
289 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.256428 (17)1.005653 (19)0.41391 (2)0.05022 (15)
N10.3679 (2)0.9489 (2)0.4509 (3)0.0496 (10)
N20.4975 (2)0.9001 (3)0.4682 (4)0.0746 (15)
N30.1453 (2)1.0475 (3)0.4696 (3)0.0597 (12)
N40.0240 (3)1.1105 (4)0.4929 (4)0.0858 (17)
O10.30863 (18)1.0137 (2)0.2956 (2)0.0579 (9)
O20.4017 (2)1.0160 (3)0.2351 (3)0.0784 (12)
O30.18771 (19)1.0558 (2)0.3031 (3)0.0673 (11)
O40.09289 (19)1.1052 (3)0.2392 (3)0.0757 (12)
O50.26009 (19)0.9499 (2)0.5931 (3)0.0736 (11)
H10.23270.91350.59830.088*
H20.27300.96470.64840.088*
C10.3704 (3)1.0012 (3)0.2976 (4)0.0529 (13)
C20.4039 (3)0.9618 (3)0.3833 (4)0.0513 (13)
C30.4686 (3)0.9380 (4)0.3940 (4)0.0679 (16)
H30.49320.94910.34670.082*
C40.4612 (3)0.8866 (3)0.5350 (4)0.0620 (15)
C50.3965 (3)0.9124 (3)0.5273 (4)0.0591 (14)
H50.37270.90420.57620.071*
C60.4918 (3)0.8426 (4)0.6191 (4)0.090 (2)
H6A0.53640.83000.61290.135*
H6B0.46770.79530.62500.135*
H6C0.49100.87430.67330.135*
C70.1295 (3)1.0804 (3)0.3063 (4)0.0586 (14)
C80.1057 (3)1.0790 (3)0.3989 (4)0.0532 (13)
C90.0454 (3)1.1085 (4)0.4106 (5)0.0747 (18)
H90.01831.12790.35910.090*
C100.0627 (3)1.0788 (4)0.5628 (5)0.0722 (17)
C110.1233 (3)1.0474 (4)0.5517 (4)0.0729 (17)
H110.14921.02560.60270.087*
C120.0393 (4)1.0786 (5)0.6554 (5)0.103 (3)
H12A0.00331.10220.64990.155*
H12B0.06941.10760.69890.155*
H12C0.03681.02580.67670.155*
C130.2915 (4)1.1117 (4)0.4756 (5)0.091 (2)
H13A0.31651.13640.43190.110*
H13B0.25321.14420.47780.110*
C140.3295 (5)1.1185 (4)0.5624 (6)0.128 (3)
H14A0.36711.08430.56330.153*
H14B0.30381.09900.60840.153*
C150.3547 (4)1.1996 (4)0.5931 (7)0.111 (3)
H15A0.38141.21970.54880.133*
H15B0.31781.23460.59380.133*
C160.3937 (5)1.1977 (5)0.6860 (7)0.139 (4)
H16A0.40911.24940.70290.208*
H16B0.43051.16340.68540.208*
H16C0.36701.17920.73030.208*
C170.2167 (3)0.8926 (3)0.3962 (4)0.0697 (17)
H17A0.24040.85900.44310.084*
H17B0.17160.89460.40790.084*
C180.2177 (4)0.8561 (4)0.3060 (5)0.107 (3)
H18A0.26270.84970.29500.129*
H18B0.19550.88950.25770.129*
C190.1832 (6)0.7749 (5)0.3022 (7)0.148 (4)
H19A0.20500.74310.35250.178*
H19B0.13840.78260.31330.178*
C200.1821 (7)0.7340 (7)0.2212 (9)0.217 (7)
H20A0.15970.68530.22580.326*
H20B0.22620.72400.21030.326*
H20C0.15960.76400.17070.326*
C210.1267 (4)0.7823 (4)0.5608 (5)0.104 (3)
H21A0.11470.74830.60810.156*
H21B0.15510.75500.52490.156*
H21C0.08790.79860.52100.156*
O60.1586 (3)0.8466 (3)0.6014 (4)0.123 (2)
H60.13400.87030.63120.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0454 (2)0.0530 (2)0.0517 (2)0.00077 (18)0.00511 (16)0.00375 (17)
N10.048 (2)0.050 (2)0.051 (3)0.001 (2)0.006 (2)0.002 (2)
N20.057 (3)0.092 (4)0.074 (3)0.017 (3)0.004 (3)0.000 (3)
N30.055 (3)0.062 (3)0.062 (3)0.010 (2)0.010 (2)0.000 (2)
N40.066 (3)0.111 (5)0.084 (4)0.014 (3)0.024 (3)0.010 (3)
O10.046 (2)0.077 (2)0.050 (2)0.0019 (19)0.0050 (17)0.0063 (18)
O20.065 (3)0.114 (3)0.059 (3)0.007 (2)0.018 (2)0.018 (2)
O30.056 (2)0.088 (3)0.058 (2)0.019 (2)0.0097 (19)0.005 (2)
O40.057 (2)0.110 (3)0.058 (3)0.018 (2)0.002 (2)0.011 (2)
O50.072 (3)0.078 (3)0.069 (3)0.014 (2)0.003 (2)0.000 (2)
C10.053 (3)0.058 (3)0.047 (3)0.001 (3)0.007 (3)0.003 (3)
C20.049 (3)0.056 (3)0.049 (3)0.004 (3)0.006 (3)0.007 (2)
C30.061 (4)0.083 (4)0.061 (4)0.012 (3)0.012 (3)0.006 (3)
C40.061 (4)0.058 (3)0.063 (4)0.009 (3)0.005 (3)0.001 (3)
C50.058 (4)0.064 (3)0.054 (3)0.002 (3)0.002 (3)0.007 (3)
C60.087 (5)0.103 (5)0.077 (5)0.022 (4)0.000 (4)0.009 (4)
C70.051 (3)0.063 (3)0.060 (4)0.000 (3)0.001 (3)0.004 (3)
C80.048 (3)0.054 (3)0.058 (3)0.002 (3)0.007 (3)0.004 (3)
C90.052 (4)0.096 (5)0.075 (4)0.011 (3)0.006 (3)0.009 (4)
C100.072 (4)0.076 (4)0.073 (4)0.006 (4)0.024 (4)0.002 (3)
C110.074 (4)0.082 (4)0.062 (4)0.016 (4)0.010 (3)0.001 (3)
C120.101 (6)0.129 (7)0.090 (5)0.021 (5)0.048 (5)0.011 (5)
C130.122 (6)0.059 (4)0.084 (5)0.006 (4)0.020 (5)0.013 (3)
C140.136 (8)0.087 (6)0.148 (8)0.019 (5)0.023 (7)0.027 (5)
C150.102 (6)0.070 (5)0.157 (8)0.022 (4)0.007 (6)0.034 (5)
C160.165 (10)0.097 (6)0.153 (9)0.007 (6)0.016 (8)0.028 (6)
C170.071 (4)0.053 (3)0.083 (4)0.013 (3)0.005 (3)0.003 (3)
C180.131 (7)0.083 (5)0.108 (6)0.028 (5)0.021 (5)0.037 (4)
C190.191 (11)0.111 (7)0.142 (9)0.040 (7)0.023 (8)0.055 (6)
C200.265 (17)0.138 (10)0.244 (16)0.054 (11)0.022 (13)0.074 (11)
C210.115 (6)0.093 (5)0.107 (6)0.020 (5)0.028 (5)0.019 (5)
O60.118 (4)0.129 (4)0.134 (4)0.045 (4)0.065 (3)0.047 (3)
Geometric parameters (Å, º) top
Sn1—C172.103 (5)C10—C121.494 (9)
Sn1—C132.107 (6)C11—H110.9300
Sn1—O12.161 (4)C12—H12A0.9600
Sn1—O32.167 (4)C12—H12B0.9600
Sn1—N12.481 (4)C12—H12C0.9600
Sn1—N32.635 (5)C13—C141.392 (9)
Sn1—O52.770 (4)C13—H13A0.9700
N1—C21.331 (6)C13—H13B0.9700
N1—C51.337 (6)C14—C151.526 (8)
N2—C31.326 (7)C14—H14A0.9700
N2—C41.330 (8)C14—H14B0.9700
N3—C81.333 (6)C15—C161.473 (10)
N3—C111.337 (7)C15—H15A0.9700
N4—C101.317 (8)C15—H15B0.9700
N4—C91.334 (8)C16—H16A0.9600
O1—C11.288 (6)C16—H16B0.9600
O2—C11.215 (7)C16—H16C0.9600
O3—C71.278 (6)C17—C181.456 (8)
O4—C71.223 (6)C17—H17A0.9700
O5—H20.8500C17—H17B0.9700
O5—H10.8500C18—C191.558 (9)
C1—C21.498 (7)C18—H18A0.9700
C2—C31.383 (7)C18—H18B0.9700
C3—H30.9300C19—C201.369 (11)
C4—C51.395 (8)C19—H19A0.9700
C4—C61.498 (8)C19—H19B0.9700
C5—H50.9300C20—H20A0.9600
C6—H6A0.9600C20—H20B0.9600
C6—H6B0.9600C20—H20C0.9600
C6—H6C0.9600C21—O61.372 (8)
C7—C81.498 (8)C21—H21A0.9600
C8—C91.376 (8)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C10—C111.390 (8)O6—H60.8200
C17—Sn1—C13161.7 (3)N4—C10—C12117.4 (6)
C17—Sn1—O1100.9 (2)C11—C10—C12121.0 (6)
C13—Sn1—O196.1 (2)N3—C11—C10121.9 (6)
C17—Sn1—O394.1 (2)N3—C11—H11119.0
C13—Sn1—O397.1 (2)C10—C11—H11119.0
O1—Sn1—O374.24 (14)C10—C12—H12A109.5
C17—Sn1—N189.9 (2)C10—C12—H12B109.5
C13—Sn1—N189.6 (2)H12A—C12—H12B109.5
O1—Sn1—N169.34 (14)C10—C12—H12C109.5
O3—Sn1—N1143.46 (14)H12A—C12—H12C109.5
C17—Sn1—N387.0 (2)H12B—C12—H12C109.5
C13—Sn1—N384.0 (2)C14—C13—Sn1125.0 (5)
O1—Sn1—N3141.33 (14)C14—C13—H13A106.1
O3—Sn1—N367.44 (15)Sn1—C13—H13A106.1
N1—Sn1—N3149.10 (14)C14—C13—H13B106.1
C17—Sn1—O575.89 (18)Sn1—C13—H13B106.1
C13—Sn1—O586.2 (2)H13A—C13—H13B106.3
O1—Sn1—O5145.38 (13)C13—C14—C15117.7 (7)
O3—Sn1—O5139.93 (13)C13—C14—H14A107.9
N1—Sn1—O576.15 (13)C15—C14—H14A107.9
N3—Sn1—O573.29 (13)C13—C14—H14B107.9
C2—N1—C5117.8 (5)C15—C14—H14B107.9
C2—N1—Sn1111.8 (3)H14A—C14—H14B107.2
C5—N1—Sn1130.4 (4)C16—C15—C14111.6 (7)
C3—N2—C4116.5 (5)C16—C15—H15A109.3
C8—N3—C11116.3 (5)C14—C15—H15A109.3
C8—N3—Sn1109.6 (3)C16—C15—H15B109.3
C11—N3—Sn1134.0 (4)C14—C15—H15B109.3
C10—N4—C9116.3 (6)H15A—C15—H15B108.0
C1—O1—Sn1125.1 (3)C15—C16—H16A109.5
C7—O3—Sn1128.4 (4)C15—C16—H16B109.5
H2—O5—Sn1138.8H16A—C16—H16B109.5
Sn1—O5—H1113.9C15—C16—H16C109.5
Sn1—O5—H2138.8H16A—C16—H16C109.5
H1—O5—H2105.0H16B—C16—H16C109.5
O2—C1—O1125.3 (5)C18—C17—Sn1116.8 (4)
O2—C1—C2119.2 (5)C18—C17—H17A108.1
O1—C1—C2115.5 (5)Sn1—C17—H17A108.1
N1—C2—C3119.9 (5)C18—C17—H17B108.1
N1—C2—C1116.8 (5)Sn1—C17—H17B108.1
C3—C2—C1123.3 (5)H17A—C17—H17B107.3
N2—C3—C2123.4 (6)C17—C18—C19110.5 (6)
N2—C3—H3118.3C17—C18—H18A109.6
C2—C3—H3118.3C19—C18—H18A109.6
N2—C4—C5121.1 (5)C17—C18—H18B109.6
N2—C4—C6118.0 (5)C19—C18—H18B109.6
C5—C4—C6120.9 (6)H18A—C18—H18B108.1
N1—C5—C4121.2 (6)C20—C19—C18116.0 (9)
N1—C5—H5119.4C20—C19—H19A108.3
C4—C5—H5119.4C18—C19—H19A108.3
C4—C6—H6A109.5C20—C19—H19B108.3
C4—C6—H6B109.5C18—C19—H19B108.3
H6A—C6—H6B109.5H19A—C19—H19B107.4
C4—C6—H6C109.5C19—C20—H20A109.5
H6A—C6—H6C109.5C19—C20—H20B109.5
H6B—C6—H6C109.5H20A—C20—H20B109.5
O4—C7—O3124.2 (6)C19—C20—H20C109.5
O4—C7—C8118.7 (5)H20A—C20—H20C109.5
O3—C7—C8117.2 (5)H20B—C20—H20C109.5
N3—C8—C9121.1 (5)O6—C21—H21A109.5
N3—C8—C7117.3 (5)O6—C21—H21B109.5
C9—C8—C7121.6 (5)H21A—C21—H21B109.5
N4—C9—C8122.8 (6)O6—C21—H21C109.5
N4—C9—H9118.6H21A—C21—H21C109.5
C8—C9—H9118.6H21B—C21—H21C109.5
N4—C10—C11121.6 (6)C21—O6—H6109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O60.851.922.755 (6)169
O5—H2···O1i0.852.193.039 (5)172
O6—H6···O4i0.821.932.703 (6)156
Symmetry code: (i) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4O
Mr557.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.609 (5), 17.119 (4), 14.558 (3)
β (°) 98.178 (3)
V3)5084 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.58 × 0.56 × 0.49
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.582, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
12959, 4462, 2981
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.122, 1.12
No. of reflections4462
No. of parameters289
No. of restraints12
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0455P)2 + 11.2132P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.58, 0.67

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—C172.103 (5)Sn1—N12.481 (4)
Sn1—C132.107 (6)Sn1—N32.635 (5)
Sn1—O12.161 (4)Sn1—O52.770 (4)
Sn1—O32.167 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O60.851.922.755 (6)169
O5—H2···O1i0.852.193.039 (5)172
O6—H6···O4i0.821.932.703 (6)156
Symmetry code: (i) x, y+2, z+1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Science Foundation of Shandong.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873–876.  CAS Google Scholar
First citationMa, C., Han, Y., Zhang, R. & Wang, D. (2004). J. Chem. Soc. Dalton Trans. pp. 1832–1840.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds