metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-benzamido­benzimidazolato-κ2N1,O)(N,N-di­methyl­formamide-κO)copper(II)

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 28 May 2008; accepted 29 May 2008; online 7 June 2008)

In the title compound, [Cu(C14H10N3O)2(C3H7NO)], the CuII atom is five-coordinated by two N,O-bidentate 2-benzamido­benzimidazolate anions and one O-coordinated dimethyl­formamide (DMF) mol­ecule, resulting in a distorted square-based pyramidal CuN2O3 geometry for the metal atom, with the DMF O atom at the apical site. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds result in chains of mol­ecules propagating along [100].

Related literature

For background on distorted copper coordination geometries, see: Hathaway (1973[Hathaway, B. J. (1973). Struct. Bond. 14, 49-67.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H10N3O)2(C3H7NO)]

  • Mr = 609.14

  • Monoclinic, P 21 /c

  • a = 9.8798 (2) Å

  • b = 23.3089 (9) Å

  • c = 12.0765 (4) Å

  • β = 106.427 (2)°

  • V = 2667.54 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 173 (2) K

  • 0.15 × 0.10 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 22936 measured reflections

  • 7739 independent reflections

  • 5179 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.176

  • S = 1.10

  • 7739 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.918 (2)
Cu1—O1 1.944 (2)
Cu1—N5 1.945 (2)
Cu1—N2 1.956 (2)
Cu1—O3 2.855 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N6i 0.88 2.05 2.847 (3) 151
N4—H4N⋯N3ii 0.88 2.26 3.019 (3) 144
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), consists of a mononuclear Cu(II) complex with one neutral molecule in the asymmetric unit (Fig. 1). The Cu(II) atom is surrounded by five atoms (Table 1): two molecules of the ligand are linked to the metal atom by one nitrogen atom and one oxygen atom for each moiety and one oxygen atom of a dimethylformamide solvent molecule complete the coordination sphere around the Cu(II) ion. The geometry around the Cu(II) ion is a very distorted square pyramid, with a long apical Cu—O3 bond of 2.8545 (28) Å, which is in the range of "semi-coordination" (2.22–2.89 ° A) for H2O (Hathaway, 1973). The dihedral angle between the fused ring system and the phenyl ring in the C1 molecule is 47.83 (13)°; the corresponding angle in the C15 molecule is 4.94 (13)°.

In the crystal, the molecules interact via N—H···N hydrogen bonds (Table 2) to result in chains propagating in [100] (Fig. 2).

Related literature top

For background on distorted copper coordination geometries, see: Hathaway (1973).

Experimental top

A solution of 0.0852 g (0.5 mmol) of copper chloride dihydrate in 10 ml of methanol was added dropwise to a solution of 0.2173 g (0.5 mmol) of 1,2-bis(N-benzoylthioureayl)benzene in 10 ml of methanol. A green precipitate appeared immediately. The resulting suspension was stirred at room temperature for 10 min. The compound was filtered and washed with 2 × 10 ml of methanol and dried under vacuum. Recrystallization from dimethylformamide gave 0.1480 g (48.66°) of (I) in the form of yellow prisms. M.p. 493–495 K (uncorrected). IR (cm-1, KBr): 3210, 1673, 1596, 1470, 1319, 1262, 1149, 857, 688. Analysis calculated for C31H27N7O3Cu: C 61.12, H 4.47, N 16.10%; found: C 61.08, H 4.49, N 16.02%.

Refinement top

All H atoms were placed geometrically (C—H = 0.95–0.98 Å, N—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms plotted at the 50% probability level.
[Figure 2] Fig. 2. Part of a [100] chain of molecules in the crystal of (I) with hydrogen bonds indicated by double-dashed lines.
Bis(2-benzamidobenzimidazolato-κ2N1,O)(N,N-dimethylformamide-κO)copper(II) top
Crystal data top
[Cu(C14H10N3O)2(C3H7NO)]F(000) = 1260
Mr = 609.14Dx = 1.517 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19475 reflections
a = 9.8798 (2) Åθ = 1.0–30.0°
b = 23.3089 (9) ŵ = 0.87 mm1
c = 12.0765 (4) ÅT = 173 K
β = 106.427 (2)°Prism, yellow
V = 2667.54 (15) Å30.15 × 0.10 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5179 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 30.1°, θmin = 1.8°
ω and ϕ scansh = 1013
22936 measured reflectionsk = 3032
7739 independent reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0937P)2 + 0.2242P]
where P = (Fo2 + 2Fc2)/3
7739 reflections(Δ/σ)max = 0.010
379 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Cu(C14H10N3O)2(C3H7NO)]V = 2667.54 (15) Å3
Mr = 609.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8798 (2) ŵ = 0.87 mm1
b = 23.3089 (9) ÅT = 173 K
c = 12.0765 (4) Å0.15 × 0.10 × 0.07 mm
β = 106.427 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5179 reflections with I > 2σ(I)
22936 measured reflectionsRint = 0.057
7739 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.10Δρmax = 0.79 e Å3
7739 reflectionsΔρmin = 0.91 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.77484 (3)0.102988 (16)0.57415 (3)0.01523 (12)
O10.6207 (2)0.08799 (10)0.43630 (17)0.0206 (5)
O20.91496 (19)0.14195 (10)0.69308 (17)0.0181 (5)
O30.6892 (3)0.22000 (12)0.5355 (2)0.0363 (6)
N10.4257 (2)0.10498 (11)0.5051 (2)0.0161 (5)
H1N0.33430.11160.48610.019*
N20.6414 (2)0.09987 (11)0.6666 (2)0.0154 (5)
N30.4298 (2)0.10461 (11)0.7000 (2)0.0162 (5)
N41.1195 (2)0.13381 (12)0.63379 (19)0.0150 (5)
H4N1.20980.14230.64920.018*
N50.9199 (2)0.08316 (11)0.5005 (2)0.0141 (5)
N61.1322 (2)0.08448 (11)0.4679 (2)0.0146 (5)
N70.7081 (3)0.27521 (13)0.6965 (2)0.0235 (6)
C10.4175 (3)0.05701 (15)0.2221 (3)0.0202 (6)
H10.49520.03130.24340.024*
C20.3263 (3)0.05531 (16)0.1114 (3)0.0238 (7)
H20.33830.02690.05860.029*
C30.2177 (3)0.09480 (16)0.0773 (3)0.0253 (7)
H30.15800.09470.00030.030*
C40.1968 (3)0.13468 (15)0.1570 (3)0.0238 (7)
H40.12280.16200.13370.029*
C50.2822 (3)0.13498 (14)0.2692 (3)0.0199 (6)
H50.26420.16120.32350.024*
C60.3954 (3)0.09662 (14)0.3029 (2)0.0174 (6)
C70.4893 (3)0.09693 (13)0.4238 (3)0.0169 (6)
C80.5014 (3)0.10310 (13)0.6188 (2)0.0152 (6)
C90.6610 (3)0.09950 (13)0.7858 (2)0.0163 (6)
C100.7839 (3)0.09685 (14)0.8780 (3)0.0186 (6)
H100.87420.09580.86470.022*
C110.7707 (3)0.09584 (15)0.9890 (3)0.0215 (7)
H110.85320.09381.05270.026*
C120.6375 (3)0.09771 (15)1.0095 (3)0.0221 (7)
H120.63180.09671.08670.026*
C130.5140 (3)0.10102 (14)0.9190 (3)0.0196 (6)
H130.42380.10260.93250.023*
C140.5289 (3)0.10195 (13)0.8074 (2)0.0172 (6)
C151.0370 (3)0.21264 (15)0.8703 (3)0.0196 (6)
H150.93930.20390.85300.024*
C161.0996 (3)0.24783 (15)0.9635 (3)0.0211 (7)
H161.04400.26421.00800.025*
C171.2437 (3)0.25913 (14)0.9917 (3)0.0215 (6)
H171.28730.28181.05750.026*
C181.3231 (3)0.23727 (14)0.9238 (3)0.0210 (6)
H181.42130.24530.94260.025*
C191.2601 (3)0.20368 (14)0.8286 (2)0.0178 (6)
H191.31500.18990.78100.021*
C201.1171 (3)0.18985 (13)0.8016 (2)0.0150 (6)
C211.0449 (3)0.15228 (13)0.7022 (2)0.0143 (6)
C221.0554 (3)0.10161 (13)0.5393 (2)0.0133 (5)
C230.9131 (3)0.05093 (13)0.4014 (2)0.0139 (6)
C240.8023 (3)0.02016 (14)0.3286 (2)0.0177 (6)
H240.71310.01800.34370.021*
C250.8257 (3)0.00729 (14)0.2333 (2)0.0181 (6)
H250.75130.02810.18180.022*
C260.9578 (3)0.00452 (14)0.2126 (2)0.0191 (6)
H260.97040.02280.14600.023*
C271.0707 (3)0.02399 (14)0.2862 (2)0.0170 (6)
H271.16100.02460.27290.020*
C281.0456 (3)0.05168 (13)0.3806 (2)0.0148 (6)
C290.7481 (4)0.25614 (16)0.6062 (3)0.0286 (8)
H290.83170.27250.59580.034*
C300.7822 (4)0.31968 (18)0.7732 (3)0.0342 (8)
H30A0.73440.32700.83270.051*
H30B0.78300.35490.72910.051*
H30C0.87940.30730.80980.051*
C310.5809 (4)0.25256 (18)0.7197 (3)0.0361 (9)
H31A0.56800.27090.78900.054*
H31B0.59050.21100.73180.054*
H31C0.49890.26060.65370.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00960 (17)0.0223 (2)0.01411 (18)0.00114 (14)0.00387 (12)0.00258 (15)
O10.0123 (9)0.0329 (14)0.0159 (10)0.0003 (9)0.0030 (7)0.0047 (9)
O20.0118 (9)0.0254 (13)0.0177 (10)0.0017 (8)0.0049 (7)0.0069 (9)
O30.0461 (15)0.0335 (16)0.0240 (12)0.0045 (12)0.0010 (11)0.0073 (11)
N10.0095 (10)0.0239 (15)0.0144 (11)0.0015 (10)0.0028 (8)0.0032 (10)
N20.0103 (10)0.0214 (14)0.0145 (11)0.0016 (9)0.0035 (8)0.0006 (10)
N30.0125 (10)0.0237 (14)0.0132 (11)0.0018 (10)0.0047 (9)0.0012 (10)
N40.0099 (10)0.0215 (14)0.0138 (11)0.0033 (10)0.0037 (8)0.0010 (10)
N50.0103 (10)0.0179 (13)0.0136 (11)0.0013 (9)0.0023 (8)0.0021 (10)
N60.0114 (10)0.0190 (13)0.0138 (11)0.0018 (10)0.0044 (8)0.0025 (10)
N70.0246 (13)0.0234 (15)0.0213 (13)0.0027 (11)0.0047 (10)0.0019 (11)
C10.0154 (13)0.0276 (18)0.0188 (14)0.0016 (12)0.0068 (11)0.0036 (13)
C20.0219 (15)0.035 (2)0.0152 (14)0.0058 (14)0.0063 (11)0.0056 (14)
C30.0262 (16)0.034 (2)0.0143 (14)0.0059 (14)0.0030 (12)0.0001 (13)
C40.0238 (15)0.0237 (19)0.0217 (15)0.0021 (13)0.0026 (12)0.0045 (13)
C50.0202 (14)0.0213 (18)0.0174 (14)0.0011 (12)0.0042 (11)0.0004 (12)
C60.0135 (12)0.0231 (17)0.0153 (13)0.0034 (11)0.0038 (10)0.0015 (12)
C70.0118 (12)0.0208 (17)0.0188 (14)0.0013 (11)0.0052 (10)0.0005 (12)
C80.0128 (12)0.0182 (15)0.0154 (13)0.0015 (11)0.0054 (10)0.0001 (12)
C90.0159 (13)0.0178 (16)0.0159 (13)0.0009 (11)0.0056 (10)0.0009 (12)
C100.0133 (13)0.0220 (17)0.0196 (14)0.0027 (11)0.0031 (10)0.0004 (12)
C110.0187 (14)0.0282 (19)0.0151 (14)0.0018 (12)0.0008 (11)0.0015 (12)
C120.0217 (15)0.0285 (19)0.0165 (14)0.0005 (13)0.0062 (11)0.0000 (13)
C130.0178 (13)0.0252 (17)0.0174 (14)0.0012 (12)0.0078 (11)0.0002 (13)
C140.0147 (13)0.0189 (16)0.0167 (13)0.0017 (11)0.0025 (10)0.0001 (12)
C150.0163 (13)0.0233 (17)0.0193 (14)0.0008 (12)0.0052 (11)0.0024 (13)
C160.0244 (15)0.0222 (17)0.0179 (14)0.0001 (13)0.0077 (11)0.0044 (13)
C170.0272 (15)0.0188 (17)0.0164 (14)0.0041 (13)0.0028 (12)0.0037 (12)
C180.0169 (13)0.0204 (17)0.0226 (15)0.0024 (12)0.0008 (11)0.0021 (13)
C190.0143 (13)0.0194 (16)0.0186 (14)0.0016 (11)0.0028 (10)0.0010 (12)
C200.0155 (12)0.0156 (15)0.0138 (13)0.0010 (11)0.0038 (10)0.0004 (11)
C210.0139 (12)0.0137 (15)0.0145 (13)0.0017 (11)0.0028 (10)0.0004 (11)
C220.0117 (12)0.0154 (15)0.0130 (12)0.0013 (11)0.0037 (9)0.0006 (11)
C230.0110 (12)0.0169 (15)0.0140 (13)0.0014 (11)0.0037 (10)0.0002 (11)
C240.0146 (13)0.0199 (16)0.0174 (14)0.0011 (11)0.0025 (10)0.0034 (12)
C250.0168 (13)0.0177 (16)0.0176 (14)0.0020 (12)0.0014 (10)0.0036 (12)
C260.0249 (15)0.0189 (16)0.0134 (13)0.0010 (12)0.0054 (11)0.0009 (12)
C270.0168 (13)0.0188 (16)0.0167 (13)0.0003 (11)0.0069 (10)0.0003 (12)
C280.0125 (12)0.0165 (15)0.0144 (13)0.0011 (11)0.0020 (10)0.0019 (11)
C290.0312 (17)0.031 (2)0.0234 (16)0.0061 (15)0.0072 (13)0.0029 (15)
C300.0370 (19)0.030 (2)0.0317 (19)0.0006 (16)0.0035 (15)0.0049 (16)
C310.0349 (19)0.039 (2)0.036 (2)0.0051 (17)0.0118 (15)0.0035 (18)
Geometric parameters (Å, º) top
Cu1—O21.918 (2)C9—C141.402 (4)
Cu1—O11.944 (2)C10—C111.384 (4)
Cu1—N51.945 (2)C10—H100.9500
Cu1—N21.956 (2)C11—C121.407 (4)
Cu1—O32.855 (3)C11—H110.9500
O1—C71.281 (3)C12—C131.391 (4)
O2—C211.280 (3)C12—H120.9500
O3—C291.223 (4)C13—C141.398 (4)
N1—C71.321 (4)C13—H130.9500
N1—C81.365 (4)C15—C161.389 (4)
N1—H1N0.8800C15—C201.403 (4)
N2—C81.341 (3)C15—H150.9500
N2—C91.397 (3)C16—C171.392 (4)
N3—C81.363 (4)C16—H160.9500
N3—C141.388 (4)C17—C181.383 (4)
N4—C211.325 (3)C17—H170.9500
N4—C221.363 (4)C18—C191.385 (4)
N4—H4N0.8800C18—H180.9500
N5—C221.357 (3)C19—C201.396 (4)
N5—C231.398 (4)C19—H190.9500
N6—C221.360 (3)C20—C211.494 (4)
N6—C281.384 (4)C23—C241.394 (4)
N7—C291.336 (4)C23—C281.400 (4)
N7—C301.444 (5)C24—C251.393 (4)
N7—C311.461 (4)C24—H240.9500
C1—C21.385 (4)C25—C261.397 (4)
C1—C61.404 (4)C25—H250.9500
C1—H10.9500C26—C271.384 (4)
C2—C31.385 (5)C26—H260.9500
C2—H20.9500C27—C281.393 (4)
C3—C41.395 (5)C27—H270.9500
C3—H30.9500C29—H290.9500
C4—C51.378 (4)C30—H30A0.9800
C4—H40.9500C30—H30B0.9800
C5—C61.400 (4)C30—H30C0.9800
C5—H50.9500C31—H31A0.9800
C6—C71.492 (4)C31—H31B0.9800
C9—C101.397 (4)C31—H31C0.9800
O2—Cu1—O1162.00 (10)C11—C12—H12119.3
O2—Cu1—N589.19 (9)C12—C13—C14116.7 (3)
O1—Cu1—N593.79 (9)C12—C13—H13121.6
O2—Cu1—N292.89 (9)C14—C13—H13121.6
O1—Cu1—N289.46 (9)N3—C14—C13131.5 (3)
N5—Cu1—N2162.91 (11)N3—C14—C9106.1 (2)
O3—Cu1—O184.70 (9)C13—C14—C9122.4 (3)
O3—Cu1—O277.75 (8)C16—C15—C20120.4 (3)
O3—Cu1—N284.97 (9)C16—C15—H15119.8
O3—Cu1—N5112.03 (10)C20—C15—H15119.8
C7—O1—Cu1126.5 (2)C15—C16—C17120.0 (3)
C21—O2—Cu1130.33 (18)C15—C16—H16120.0
C7—N1—C8120.2 (2)C17—C16—H16120.0
C7—N1—H1N119.9C18—C17—C16119.9 (3)
C8—N1—H1N119.9C18—C17—H17120.1
C8—N2—C9105.7 (2)C16—C17—H17120.1
C8—N2—Cu1122.08 (19)C17—C18—C19120.2 (3)
C9—N2—Cu1131.98 (18)C17—C18—H18119.9
C8—N3—C14107.3 (2)C19—C18—H18119.9
C21—N4—C22119.5 (2)C18—C19—C20120.8 (3)
C21—N4—H4N120.3C18—C19—H19119.6
C22—N4—H4N120.3C20—C19—H19119.6
C22—N5—C23105.7 (2)C19—C20—C15118.6 (3)
C22—N5—Cu1123.32 (19)C19—C20—C21123.0 (3)
C23—N5—Cu1130.99 (18)C15—C20—C21118.5 (2)
C22—N6—C28108.0 (2)O2—C21—N4127.3 (3)
C29—N7—C30123.3 (3)O2—C21—C20114.7 (2)
C29—N7—C31120.3 (3)N4—C21—C20118.0 (2)
C30—N7—C31116.3 (3)N5—C22—N6111.1 (2)
C2—C1—C6120.2 (3)N5—C22—N4130.0 (2)
C2—C1—H1119.9N6—C22—N4118.8 (2)
C6—C1—H1119.9C24—C23—N5130.9 (2)
C3—C2—C1120.4 (3)C24—C23—C28120.1 (3)
C3—C2—H2119.8N5—C23—C28109.0 (2)
C1—C2—H2119.8C25—C24—C23118.2 (3)
C2—C3—C4119.4 (3)C25—C24—H24120.9
C2—C3—H3120.3C23—C24—H24120.9
C4—C3—H3120.3C24—C25—C26120.5 (3)
C5—C4—C3120.8 (3)C24—C25—H25119.7
C5—C4—H4119.6C26—C25—H25119.7
C3—C4—H4119.6C27—C26—C25122.1 (3)
C4—C5—C6120.0 (3)C27—C26—H26118.9
C4—C5—H5120.0C25—C26—H26118.9
C6—C5—H5120.0C26—C27—C28116.7 (3)
C5—C6—C1119.1 (3)C26—C27—H27121.6
C5—C6—C7120.4 (3)C28—C27—H27121.6
C1—C6—C7120.5 (3)N6—C28—C27131.6 (2)
O1—C7—N1127.9 (3)N6—C28—C23106.2 (2)
O1—C7—C6116.3 (3)C27—C28—C23122.2 (3)
N1—C7—C6115.7 (2)O3—C29—N7127.4 (3)
N2—C8—N3111.9 (2)O3—C29—H29116.3
N2—C8—N1129.8 (3)N7—C29—H29116.3
N3—C8—N1118.3 (2)N7—C30—H30A109.5
C10—C9—N2131.1 (3)N7—C30—H30B109.5
C10—C9—C14119.9 (3)H30A—C30—H30B109.5
N2—C9—C14109.0 (2)N7—C30—H30C109.5
C11—C10—C9118.3 (3)H30A—C30—H30C109.5
C11—C10—H10120.9H30B—C30—H30C109.5
C9—C10—H10120.9N7—C31—H31A109.5
C10—C11—C12121.2 (3)N7—C31—H31B109.5
C10—C11—H11119.4H31A—C31—H31B109.5
C12—C11—H11119.4N7—C31—H31C109.5
C13—C12—C11121.4 (3)H31A—C31—H31C109.5
C13—C12—H12119.3H31B—C31—H31C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N6i0.882.052.847 (3)151
N4—H4N···N3ii0.882.263.019 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C14H10N3O)2(C3H7NO)]
Mr609.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.8798 (2), 23.3089 (9), 12.0765 (4)
β (°) 106.427 (2)
V3)2667.54 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.15 × 0.10 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22936, 7739, 5179
Rint0.057
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.177, 1.10
No. of reflections7739
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.91

Computer programs: COLLECT (Nonius, 1998), DENZO (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—O21.918 (2)Cu1—N21.956 (2)
Cu1—O11.944 (2)Cu1—O32.855 (3)
Cu1—N51.945 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N6i0.882.052.847 (3)151
N4—H4N···N3ii0.882.263.019 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for support (AUF-PSCI No. 6314PS804) and Professor R. Welter (Université Louis Pasteur 4, Strasbourg, France) for assistance.

References

First citationHathaway, B. J. (1973). Struct. Bond. 14, 49–67.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds